P1896 [SCOI2005]互不侵犯
题目描述
在N×N的棋盘里面放K个国王,使他们互不攻击,共有多少种摆放方案。国王能攻击到它上下左右,以及左上左下右上右下八个方向上附近的各一个格子,共8个格子。
注:数据有加强(2018/4/25)
输入输出格式
输入格式:
只有一行,包含两个数N,K ( 1 <=N <=9, 0 <= K <= N * N)
输出格式:
所得的方案数
输入输出样例
3 2
16
Solution:
本题状压dp水题。
预处理单行合法的状态和所放国王数,定义$f[i][j][k]$表示前$i$行放了$j$个国王且最后一行状态为$k$时的方案数。
那么转移就比较简单了,一层枚举阶段j(国王数),第二层枚举阶段i(行数),第三层枚举状态k(最后一行国王状态),第四层枚举决策p(转移后状态),判断合法后随便搞搞就好了。
代码:
/*Code by 520 -- 10.14*/
#include<bits/stdc++.h>
#define il inline
#define ll long long
#define RE register
#define For(i,a,b) for(RE int (i)=(a);(i)<=(b);(i)++)
#define Bor(i,a,b) for(RE int (i)=(b);(i)>=(a);(i)--)
using namespace std;
const int N=;
int n,m,lim,w[<<N];
ll f[N][N*N*][<<N],ans;
bool sta[<<N]; int main(){
ios::sync_with_stdio();
cin>>n>>m,lim=(<<n)-;
For(i,,lim) {
sta[i]=(!(i&(i<<))&&!(i&(i>>)));
if(sta[i])
For(j,,n-) if(i&(<<j)) w[i]++;
}
f[][][]=;
For(p,,m) For(i,,n) For(j,,lim)
if(sta[j]) For(k,,lim)
if(sta[k]&&!(j&k)&&!((j<<)&k)&&!((j>>)&k))
f[i][p+w[j]][j]+=f[i-][p][k];
For(i,,lim) ans+=f[n][m][i];
cout<<ans;
return ;
}
P1896 [SCOI2005]互不侵犯的更多相关文章
- 洛谷 P1896 [SCOI2005]互不侵犯
洛谷 P1896 [SCOI2005]互不侵犯 题目描述 在N×N的棋盘里面放K个国王,使他们互不攻击,共有多少种摆放方案.国王能攻击到它上下左右,以及左上左下右上右下八个方向上附近的各一个格子,共8 ...
- 洛谷P1896 [SCOI2005]互不侵犯King
P1896 [SCOI2005]互不侵犯King 题目描述 在N×N的棋盘里面放K个国王,使他们互不攻击,共有多少种摆放方案.国王能攻击到它上下左右,以及左上左下右上右下八个方向上附近的各一个格子,共 ...
- 洛谷——P1896 [SCOI2005]互不侵犯
P1896 [SCOI2005]互不侵犯 状压DP入门题 状压DP一般需要与处理状态是否合法,节省时间 设定状态dp[i][j][k]表示第i行第j个状态选择国王数为k的方案数 $dp[i][j][n ...
- P1896 [SCOI2005] 互不侵犯 方法记录
原题链接 [SCOI2005] 互不侵犯 题目描述 在N×N的棋盘里面放K个国王,使他们互不攻击,共有多少种摆放方案.国王能攻击到它上下左右,以及左上左下右上右下八个方向上附近的各一个格子,共8个格子 ...
- 洛谷 P1896 [SCOI2005]互不侵犯 (状态压缩DP)
题目描述 在N×N的棋盘里面放K个国王,使他们互不攻击,共有多少种摆放方案.国王能攻击到它上下左右,以及左上左下右上右下八个方向上附近的各一个格子,共8个格子. 注:数据有加强(2018/4/25) ...
- 洛谷 P1896 [SCOI2005]互不侵犯King
题目描述 在N×N的棋盘里面放K个国王,使他们互不攻击,共有多少种摆放方案.国王能攻击到它上下左右,以及左上左下右上右下八个方向上附近的各一个格子,共8个格子. 输入输出格式 输入格式: 只有一行,包 ...
- P1896 [SCOI2005]互不侵犯King
题目描述 在N×N的棋盘里面放K个国王,使他们互不攻击,共有多少种摆放方案.国王能攻击到它上下左右,以及左上左下右上右下八个方向上附近的各一个格子,共8个格子. 输入输出格式 输入格式: 只有一行,包 ...
- 洛谷P1896 [SCOI2005]互不侵犯King【状压DP】
题目描述 在N×N的棋盘里面放K个国王,使他们互不攻击,共有多少种摆放方案.国王能攻击到它上下左右,以及左上左下右上右下八个方向上附近的各一个格子,共8个格子. 输入格式: 只有一行,包含两个数N,K ...
- 【题解】洛谷P1896 [SCOI2005] 互不侵犯(状压DP)
洛谷P1896:https://www.luogu.org/problemnew/show/P1896 前言 这是一道状压DP的经典题 原来已经做过了 但是快要NOIP 复习一波 关于一些位运算的知识 ...
随机推荐
- python描述符详解
1描述符: 描述符是指将某种特殊类型的类的实例支配给另外一个类的属性. 对于特殊类型必须实现以下三个方法中至少一个方法: def __get__(self,instance,owner): -用 ...
- Spark聚合操作:combineByKey()
Spark中对键值对RDD(pairRDD)基于键的聚合函数中,都是通过combineByKey()实现的. 它可以让用户返回与输入数据类型不同的返回值(可以自己配置返回的参数,返回的类型) 首先理解 ...
- mysql的安装教程-【linux】
先卸载系统自带的mysql,停止mysql:service mysql stop 1.查找以前是否装有mysql命令:rpm -qa|grep -i mysql可以看到mysql的几个包:qt-mys ...
- docker 从本地拷贝文件
1.找到docker的ID全称 docker inspect -f '{{.Id}}' docker_name 2.执行拷贝命令 docker cp 本地文件路径 ID全称:docker路径 3.如果 ...
- 【神经网络】自编码聚类算法--DEC (Deep Embedded Clustering)
1.算法描述 最近在做AutoEncoder的一些探索,看到2016年的一篇论文,虽然不是最新的,但是思路和方法值得学习.论文原文链接 http://proceedings.mlr.press/v48 ...
- XSS构造技巧
利用字符编码: 百度曾经出过一个XSS漏洞,在一个<script>标签中输出一个变量,其中转义了双引号: var redirectUrl="\";alert(/XSS/ ...
- js多条件if语句简写发生Uncaught SyntaxError: Unexpected token }
改写原生js 多条件if判断语句时,采用三元方法,发生Uncaught SyntaxError: Unexpected token } function compareImgSize() { var ...
- groupadd命令详解
基础命令学习目录首页 原文链接:https://wtj6891.iteye.com/blog/2096076 groupadd创建组群 使用groupadd命令可以在系统中创建组群账户 语法: gro ...
- Python20-Day07
面向对象之继承与派生 什么是继承? 继承是一种创建新类的方式,新建的类可以继承一个或者多个父类,父类又称为基类或者超类,新建的类称为派生类或者子类 子类会‘遗传’父类的特性,从而解决代码重用问题 py ...
- Daily Scrum1 11.3
今天是我们团队进入代码实现阶段的第一天,经过一周对上一届项目代码的阅读和研究,队员们已经从代码中分析出我们这次项目将要修改和补充的地方,我们接下来要做的地方就是在两周的时间内将团队项目在alpha阶段 ...