题目链接

BZOJ1061

题解

今天终于用正宗的线性规划\(A\)了这道题

题目可以看做有\(N\)个限制和\(M\)个变量

变量\(x_i\)表示第\(i\)种志愿者的人数,对于第\(i\)种志愿者所能触及的那些天,\(x_i\)的系数都为\(1\),其余为\(0\)

也就是

\[min \; z = \sum\limits_{i = 1}^{M} C_ix_i \\
\left\{
\begin{aligned}
\sum\limits_{i = 1}^{M} [S_i \le j \le T_i]x_i \ge A_i \qquad j \in [1,N]\\
x_i \ge 0 \qquad i \in [1,M]
\end{aligned}
\right.
\]

转化为标准型线性规划,使用单纯形算法求解即可

诶?解保证是整数吗?

似乎相对于费用流,空间大且跑得慢,,,

#include<algorithm>
#include<iostream>
#include<cstring>
#include<cstdlib>
#include<cstdio>
#include<vector>
#include<ctime>
#include<cmath>
#include<map>
#define Redge(u) for (int k = h[u],to; k; k = ed[k].nxt)
#define REP(i,n) for (int i = 1; i <= (n); i++)
#define mp(a,b) make_pair<int,int>(a,b)
#define cls(s) memset(s,0,sizeof(s))
#define cp pair<int,int>
#define LL long long int
using namespace std;
const int N = 1005,M = 10005;
const double eps = 1e-8,INF = 1e15;
inline int read(){
int out = 0,flag = 1; char c = getchar();
while (c < 48 || c > 57){if (c == '-') flag = -1; c = getchar();}
while (c >= 48 && c <= 57){out = (out << 3) + (out << 1) + c - 48; c = getchar();}
return out * flag;
}
int n,m,id[M << 1];
double a[N][M];
void Pivot(int l,int e){
swap(id[n + l],id[e]);
double t = a[l][e]; a[l][e] = 1;
for (int j = 0; j <= n; j++) a[l][j] /= t;
for (int i = 0; i <= m; i++) if (i != l && fabs(a[i][e]) > eps){
t = a[i][e]; a[i][e] = 0;
for (int j = 0; j <= n; j++) a[i][j] -= a[l][j] * t;
}
}
void init(){
while (true){
int e = 0,l = 0;
for (int i = 1; i <= m; i++) if (a[i][0] < -eps && (!l || (rand() & 1))) l = i;
if (!l) break;
for (int j = 1; j <= n; j++) if (a[l][j] < -eps && (!e || (rand() & 1))) e = j;
Pivot(l,e);
}
}
void simplex(){
while (true){
int l = 0,e = 0; double mn = INF;
for (int j = 1; j <= n; j++)
if (a[0][j] > eps){e = j; break;}
if (!e) break;
for (int i = 1; i <= m; i++) if (a[i][e] > eps && a[i][0] / a[i][e] < mn)
mn = a[i][0] / a[i][e],l = i;
Pivot(l,e);
}
}
int main(){
srand(time(NULL)); int S,T,C;
m = read(); n = read();
REP(i,m) a[i][0] = -read();
REP(j,n){
S = read(); T = read(); C = read();
for (int i = S; i <= T; i++)
a[i][j] = -1;
a[0][j] = -C;
}
REP(i,n) id[i] = i;
init(); simplex();
printf("%d",(int)(a[0][0] + 0.5));
return 0;
}

BZOJ1061 [Noi2008]志愿者招募 【单纯形】的更多相关文章

  1. [BZOJ1061][Noi2008]志愿者招募

    [BZOJ1061][Noi2008]志愿者招募 试题描述 申奥成功后,布布经过不懈努力,终于成为奥组委下属公司人力资源部门的主管.布布刚上任就遇到了一个难 题:为即将启动的奥运新项目招募一批短期志愿 ...

  2. 网络流解线性规划问题 BZOJ1061: [Noi2008]志愿者招募

    线性规划定义: 在给定有限的资源和竞争约束情况下,很多问题都可以表述为最大化或最小化某个目标.如果可以把目标指定为某些变量的线性函数,而且如果可以将资源约束指定为这些变量的等式或不等式,则得到了一个线 ...

  3. 【费用流】BZOJ1061: [Noi2008]志愿者招募(这题超好)

    1061: [Noi2008]志愿者招募 Time Limit: 20 Sec  Memory Limit: 162 MBSubmit: 5291  Solved: 3173[Submit][Stat ...

  4. [BZOJ1061] [Noi2008] 志愿者招募 (费用流)

    Description 申奥成功后,布布经过不懈努力,终于成为奥组委下属公司人力资源部门的主管.布布刚上任就遇到了一个难 题:为即将启动的奥运新项目招募一批短期志愿者.经过估算,这个项目需要N 天才能 ...

  5. 【费用流】BZOJ1061[NOI2008]-志愿者招募

    [题目大意] 一个项目需要n天完成,其中第i天至少需要Ai个人.共有m类人可以招募,其中第i类可以从第Si天做到第Ti天,每人的招募费用为Ci元.求最小招募费用. [思路] byvoid神犇的建图详解 ...

  6. BZOJ1061: [Noi2008]志愿者招募(线性规划)

    Time Limit: 20 Sec  Memory Limit: 162 MBSubmit: 5725  Solved: 3437[Submit][Status][Discuss] Descript ...

  7. BZOJ1061 NOI2008 志愿者招募 线性规划、费用流

    传送门 一道思路很妙的线性规划网络流 设\(X_i\)表示第\(i\)天需要的人数,\(P_i\)表示第\(i\)种人雇佣的个数 那么我们可以列出一系列式子 比如说样例就可以列出三个式子: \(P_1 ...

  8. 线性规划费用流解法(Bzoj1061: [Noi2008]志愿者招募)

    题面 传送门 Sol 线性规划费用流解法用与求解未知数为非负数的问题 这道题可以列出一堆形如 \(x[i]+x[j]+x[k]+...>=a[p]\) 的不等式 我们强行给每个式子减去一个东西, ...

  9. [BZOJ1061][Noi2008]志愿者招募 线性规划+费用流

    题目链接:http://www.lydsy.com/JudgeOnline/problem.php?id=1061 根据题意列方程,然后用网络流解线性规划. 题解直接贴ByVoid的吧,太神了:htt ...

随机推荐

  1. userdel命令详解

    基础命令学习目录首页 原文链接:http://www.360doc.com/content/15/0814/14/2149364_491595091.shtml 命 令: userdel  功能说明: ...

  2. 前端_html

    目录 HTML介绍 标签说明 常用标签 <!DOCTYPE>标签 <head>内常用标签 <body>内常用标签 特殊字符 其他:各种各样的标签 HTML的规范 H ...

  3. jenkins设置定时任务

    每次都手动的构建项目显然不够方便,有时候需要定时地执行自动化测试脚本.例如,每天晚上定时执行 pjenkins.py 文件来运行自动化测试项目. 设置定时任务 前面已经创建的 “python test ...

  4. 自定义UIView怎么注册销毁NSNotification通知

    问题描述:在使用天猫tangram框架后.部分组件自定义后会用到通知,但是在iOS 8 系统中,会崩溃? 原因分析:当对象挂掉后,要对应移除注册的通知. 否则当你重复执行发送通知的时候,在iOS8 系 ...

  5. 第九次psp例行报告

    本周psp 本周进度条 代码累积折线图 博文字数累积折线图 饼状图

  6. 结对项目:SudokuGame

    1. Github项目地址:https://github.com/ZiJiaW/SudokuGame GUI在BIN目录下的SudokuGUI.rar中,解压后打开SudokuGame.exe即可.2 ...

  7. 20172319 实验二《Java面向对象程序设计》实验报告

    20172319 2018.04.17-30 实验二<Java面向对象程序设计>实验报告 课程名称:<程序设计与数据结构> 学生班级:1723班 学生姓名:唐才铭 学生学号:2 ...

  8. C++ MOOC

    相关课程列表: C++远征之起航篇 C++远征之离港篇 C++远征之封装篇 上 C++远征之封装篇 下 C++远征之继承篇 C++远征之多态篇 授课老师:james_yuan 在寒假,我主要选择 C+ ...

  9. [不明所以]android 5.0 couldn't find "libmsc.so"

    用5.0 mi2调试的时候 search那边不行, 出现...couldn't find "libmsc.so" 我这边情况的解决方法是 在armeabi的libmsc.so复制一 ...

  10. mysql group by分组查询错误修改

    select @@global.sql_mode;set @@sql_mode ='STRICT_TRANS_TABLES,NO_ZERO_IN_DATE,NO_ZERO_DATE,ERROR_FOR ...