题解【bzoj2653 middle】
Description
给你一个序列,每次询问给出四个数 \(a,b,c,d\),求所有区间 \([l,r]\) 满足 \(l \in [a,b], r \in [c,d]\) 的中位数的最大值。强制在线
\(n \leq 20000, Q \leq 25000,a_i \leq 10^9\)
Solution
考虑二分答案。假设现在二分出来的是 \(x\) ,那么把 \(\ge x\) 的位置设成 \(1\) ,\(< x\) 的设为 \(-1\) 。那么一个区间的中位数 \(\ge x\) 等价于这个区间的和 \(\ge 0\)
如何处理题目给的左右端点的限制?
可以发现 \([l,r]\) 必然包含 \([b+1,c-1]\) (如果 \(b+1 \leq c+1\) 的话)所以 \([l, r]\) 的和必然包含 \([b+1, c-1]\) 的和
显然让 \([l,r]\) 的和最大的方案是取 \([a,b]\) 的最大右段和 和 \([c,d]\) 的最大左段和
这些都可以用线段树维护。但这样需要每个数都开一颗线段树,空间爆炸。
把数组排序,这样每个数的线段树显然只是由前一个数的线段树把一个点的权值从 \(1\) 改为 \(-1\) 。可以使用主席树的思想(貌似就是主席树
然后就做完了。复杂度 \(O(m \log^2 n)\)
Code
#include <bits/stdc++.h>
using namespace std;
const int N = 2000;
int n, m; int q[4];
struct Node {
int d, id;
} a[N];
inline bool cmp(Node x, Node y) {
return x.d < y.d;
}
struct node {
int left, right;
int sm, lm, rm;
node *ch[2];
inline void upd() {
sm = ch[0]->sm + ch[1]->sm;
lm = max(ch[0]->lm, ch[0]->sm + ch[1]->lm);
rm = max(ch[1]->rm, ch[1]->sm + ch[0]->rm);
}
} *rt[N], pool[N * 50], *cur = pool, *ans;
inline void B (node *r, int left, int right) {
r->left = left, r->right = right;
if(left == right) { r->sm = r->lm = r->rm = 1; return ; }
node *lson = cur++, *rson = cur++;
int mid = (left + right) >> 1;
r->ch[0] = lson, r->ch[1] = rson;
B(lson, left, mid), B(rson, mid + 1, right); r->upd();
}
inline void I (node *pre, node *now, int pos) {
now->left = pre->left, now->right = pre->right;
if(now->left == now->right) {
now->sm = now->lm = now->rm = -1; return ;
} int mid = (pre->left + pre->right) >> 1;
if(pos <= mid) now->ch[1] = pre->ch[1], I(pre->ch[0], now->ch[0] = cur++, pos);
if(pos > mid) now->ch[0] = pre->ch[0], I(pre->ch[1], now->ch[1] = cur++, pos);
now->upd();
}
inline node* Q (node *now, int l, int r) {
if(now->left == l && now->right == r) return now;
if(now->ch[0]->right >= r) return Q(now->ch[0], l, r);
else if(now->ch[1]->left <= l) return Q(now->ch[1], l, r);
else {
node *ret = cur++, *L, *R;
L = Q(now->ch[0], l, now->ch[0]->right);
R = Q(now->ch[1], now->ch[1]->left, r);
ret->sm = L->sm + R->sm;
ret->lm = max(L->lm, L->sm + R->lm);
ret->rm = max(R->rm, R->sm + L->rm);
return ret;
}
}
inline bool check(int id) {
int sum = 0;
if(q[2] + 1 <= q[3] - 1) sum += Q (rt[id - 1], q[2] + 1, q[3] - 1)->sm;
sum += Q (rt[id - 1], q[1], q[2])->rm;
sum += Q (rt[id - 1], q[3], q[4])->lm;
return sum >= 0;
}
int main() {
scanf("%d", &n);
for(int i = 1; i <= n; i++) {
scanf("%d", &a[i].d);
a[i].id = i;
} sort(a + 1, a + n + 1, cmp);
B(rt[0] = cur++, 1, n);
for(int i = 1; i <= n; i++) {
rt[i] = cur++; I(rt[i - 1], rt[i], a[i].id);
}
int ans = 0; scanf("%d", &m);
for(int i = 1; i <= m; i++) {
for(int j = 1; j <= 4; j++) {
scanf("%d", &q[j]),
q[j] += ans, q[j] %= n; q[j]++;
}
sort(q + 1, q + 4 + 1);
int l = 1, r = n;
while(l <= r) {
int mid = (l + r) / 2;
if(check(mid)) l = mid + 1, ans = a[mid].d;
else r = mid - 1;
} printf("%d\n", ans);
}
return 0;
}
题解【bzoj2653 middle】的更多相关文章
- BZOJ2653 middle 【主席树】【二分】*
BZOJ2653 middle Description 一个长度为n的序列a,设其排过序之后为b,其中位数定义为b[n/2],其中a,b从0开始标号,除法取下整.给你一个长度为n的序列s.回答Q个这样 ...
- bzoj2653: middle
首先,对于每个询问,我们二分答案 然后对于序列中大于等于中位数的数,我们把它们置为1,小于中位数的数,置为-1 那么如果一个区间和大于等于0,那么就资磁,否则就不滋磁 这个区间和呢,我们可以用主席树维 ...
- BZOJ2653 middle(二分答案+主席树)
与中位数有关的题二分答案是很常用的trick.二分答案之后,将所有大于它的看成1小于它的看成-1,那么只需要判断是否存在满足要求的一段和不小于0. 由于每个位置是1还是-1并不固定,似乎不是很好算.考 ...
- [BZOJ2653]middle 主席树+二分
2653: middle Time Limit: 20 Sec Memory Limit: 512 MBSubmit: 2042 Solved: 1123[Submit][Status][Disc ...
- BZOJ2653 middle 【二分 + 主席树】
题目 一个长度为n的序列a,设其排过序之后为b,其中位数定义为b[n/2],其中a,b从0开始标号,除法取下整.给你一个 长度为n的序列s.回答Q个这样的询问:s的左端点在[a,b]之间,右端点在[c ...
- [bzoj2653][middle] (二分 + 主席树)
Description 一个长度为n的序列a,设其排过序之后为b,其中位数定义为b[n/2],其中a,b从0开始标号,除法取下整. 给你一个长度为n的序列s. 回答Q个这样的询问:s的左端点在[a,b ...
- PKUSC2018训练日程(4.18~5.30)
(总计:共66题) 4.18~4.25:19题 4.26~5.2:17题 5.3~5.9: 6题 5.10~5.16: 6题 5.17~5.23: 9题 5.24~5.30: 9题 4.18 [BZO ...
- 算法与数据结构基础 - 链表(Linked List)
链表基础 链表(Linked List)相比数组(Array),物理存储上非连续.不支持O(1)时间按索引存取:但链表也有其优点,灵活的内存管理.允许在链表任意位置上插入和删除节点.单向链表结构一般如 ...
- BZOJ2653:middle——题解
http://www.lydsy.com/JudgeOnline/problem.php?id=2653 Description 一个长度为n的序列a,设其排过序之后为b,其中位数定义为b[n/2], ...
随机推荐
- python2.7 倒计时
From: http://www.vitostack.com/2016/06/05/python-clock/#more Python公告 Python 发布了一个网站 http://pythoncl ...
- nginx keepalived 高可用方案(转)
转自: https://www.cnblogs.com/leeSmall/p/9356535.html 一.Nginx Rewrite 规则 1. Nginx rewrite规则 Rewrite规则含 ...
- 转载---VisualStudioCode通过SSH远程编辑文件
最近需要长期修改远端服务器上的代码,调试.vim操作又不是很6,想到了远程操作的办法,找到一篇好用的bolg,记录一下. 原文链接:https://blog.csdn.net/qq_38401919/ ...
- final文案+美工展示
作业要求:https://edu.cnblogs.com/campus/nenu/SWE2017FALL/homework/1438 团队介绍:thunder 组成员及各位博客地址: 1.王航:htt ...
- Alpha版本测试文档
概述 本次测试主要是为了测试是否有导致崩溃的bug,验证是否符合软件基本需求. 测试环境 硬件测试:安卓系统手机,安卓平板. 测试人员 赖彦谕,金哉仁. 实际进度 2015/11/6 – 2015/1 ...
- 团队项目-NABCD
用户需求分析与NABCD 模拟经营类(SIM)游戏:玩家模拟经营一家软件公司,平台初步定为Android. Need需求 任何一款游戏都要有自己的定位和目标群体,这些 iiMediaResearch数 ...
- 2017-2018-2学期 20172324《Java程序设计》第六周学习总结
20172324<Java程序设计>第六周学习总结 教材学习内容总结 如何创建数组以及int[] X与int X[]的区别(编译时是没有差别的,只是前者与其他类型的声明方式有一致性) 每一 ...
- 福大软工1816 · 评分结果 · Alpha冲刺
作业地址:alpha冲刺1.alpha冲刺2.alpha冲刺3.alpha冲刺4.alpha冲刺5.alpha冲刺6.alpha冲刺7.alpha冲刺8.alpha冲刺9.alpha冲刺10 作业提交 ...
- asp.net 错误24
错误 24 “xxx.Web.xxx.xxx”不包含“xxName”的定义,并且找不到可接受类型为“xxx.Web.xxxr.xxx”的第一个参数的扩展方法“xxxName”(是否缺少 using 指 ...
- 读书笔记-《Java核心技术卷I-基础知识》
1.定时器Timer类 构造定时器时,需要设置一个时间间隔,并告知定时器,当到达时间间隔时需要做什么操作.定时器需要知道调用哪一个方法,并要求传递的对象所属的类实现了java.awt.event包的A ...