keras中的mini-batch gradient descent (转)
深度学习的优化算法,说白了就是梯度下降。每次的参数更新有两种方式。
一、
第一种,遍历全部数据集算一次损失函数,然后算函数对各个参数的梯度,更新梯度。这种方法每更新一次参数都要把数据集里的所有样本都看一遍,计算量开销大,计算速度慢,不支持在线学习,这称为Batch gradient descent,批梯度下降。
二、
另一种,每看一个数据就算一下损失函数,然后求梯度更新参数,这个称为随机梯度下降,stochastic gradient descent。这个方法速度比较快,但是收敛性能不太好,可能在最优点附近晃来晃去,hit不到最优点。两次参数的更新也有可能互相抵消掉,造成目标函数震荡的比较剧烈。
三、
为了克服两种方法的缺点,现在一般采用的是一种折中手段,mini-batch gradient decent,小批的梯度下降,这种方法把数据分为若干个批,按批来更新参数,这样,一个批中的一组数据共同决定了本次梯度的方向,下降起来就不容易跑偏,减少了随机性。另一方面因为批的样本数与整个数据集相比小了很多,计算量也不是很大。
基本上现在的梯度下降都是基于mini-batch的,所以Keras的模块中经常会出现batch_size,就是指这个。batch_size指的是一个batch有多少个样本,而不是由多少个batch。
顺便说一句,Keras中用的优化器SGD是stochastic gradient descent的缩写,但不代表是一个样本就更新一回,还是基于mini-batch的。
------------------------------------------------
来源:
1、keras中文文档: https://keras-cn.readthedocs.io/en/latest/for_beginners/concepts/
keras中的mini-batch gradient descent (转)的更多相关文章
- 几种梯度下降方法对比(Batch gradient descent、Mini-batch gradient descent 和 stochastic gradient descent)
https://blog.csdn.net/u012328159/article/details/80252012 我们在训练神经网络模型时,最常用的就是梯度下降,这篇博客主要介绍下几种梯度下降的变种 ...
- flink 批量梯度下降算法线性回归参数求解(Linear Regression with BGD(batch gradient descent) )
1.线性回归 假设线性函数如下: 假设我们有10个样本x1,y1),(x2,y2).....(x10,y10),求解目标就是根据多个样本求解theta0和theta1的最优值. 什么样的θ最好的呢?最 ...
- 批量梯度下降(Batch gradient descent) C++
At each step the weight vector is moved in the direction of the greatest rate of decrease of the err ...
- Batch Gradient Descent vs. Stochastic Gradient Descent
梯度下降法(Gradient Descent)是用于最小化代价函数的方法. When $a \ne 0$, there are two solutions to \(ax^2 + bx + c = 0 ...
- batch gradient descent(批量梯度下降) 和 stochastic gradient descent(随机梯度下降)
批量梯度下降是一种对参数的update进行累积,然后批量更新的一种方式.用于在已知整个训练集时的一种训练方式,但对于大规模数据并不合适. 随机梯度下降是一种对参数随着样本训练,一个一个的及时updat ...
- 随机梯度下降(Stochastic gradient descent)和 批量梯度下降(Batch gradient descent )的公式对比、实现对比[转]
梯度下降(GD)是最小化风险函数.损失函数的一种常用方法,随机梯度下降和批量梯度下降是两种迭代求解思路,下面从公式和实现的角度对两者进行分析,如有哪个方面写的不对,希望网友纠正. 下面的h(x)是要拟 ...
- 【转】 随机梯度下降(Stochastic gradient descent)和 批量梯度下降(Batch gradient descent )的公式对比、实现对比
梯度下降(GD)是最小化风险函数.损失函数的一种常用方法,随机梯度下降和批量梯度下降是两种迭代求解思路,下面从公式和实现的角度对两者进行分析,如有哪个方面写的不对,希望网友纠正. 下面的h(x)是要拟 ...
- 机器学习-随机梯度下降(Stochastic gradient descent)和 批量梯度下降(Batch gradient descent )
梯度下降(GD)是最小化风险函数.损失函数的一种常用方法,随机梯度下降和批量梯度下降是两种迭代求解思路,下面从公式和实现的角度对两者进行分析,如有哪个方面写的不对,希望网友纠正. 下面的h(x)是要拟 ...
- 【论文翻译】An overiview of gradient descent optimization algorithms
这篇论文最早是一篇2016年1月16日发表在Sebastian Ruder的博客.本文主要工作是对这篇论文与李宏毅课程相关的核心部分进行翻译. 论文全文翻译: An overview of gradi ...
随机推荐
- 字符串的排列(python)
题目描述 输入一个字符串,按字典序打印出该字符串中字符的所有排列.例如输入字符串abc,则打印出由字符a,b,c所能排列出来的所有字符串abc,acb,bac,bca,cab和cba. 输入描述: 输 ...
- 用java开发图形界面项目,如何实现从本地选择图片文件并以二进制流的形式保存到MySQL数据库,并重新现实到面板
- python动态模块导入
首先创建一个模块目录lib,然后在目录内创建一个模块为:aa.py 官方推荐: import importlib aa = importlib.import_module('lib.aa') c = ...
- FortiGate防火墙对数据包处理流程
1.流程图 2.防火墙对数据包处理过程的各步骤如下: 1)Interface(网卡接口) 网卡接口驱动负责接数收据包,并转交给下一过程. 2)DoS Sensor(DoS防御,默认关闭) 负责过滤SY ...
- vue-router 动态添加 路由
动态添加路由可以用了做权限管理.登录后服务器端返回权限菜单,前端动态添加路由 然后在设置菜单 1.vue-router 有方法router.addRoutes(routes) 动态添加更多的路由规则 ...
- (转)android import library switch语句报错case expressions must be constant expressions
今天当我从github上下载一个工程,并把它的库文件导入eclipse中,发现switch语句报错case expressions must be constant expressions : 解决方 ...
- jenkins shell部署
jenkins执行shell脚本 jenkins执行shell 上一篇说的是jenkins+svn+maven把war包自动部署到Tomcat,这篇是从SVN上拉取代码maven生成jar文件,并且拷 ...
- 设计模式学习心得<建造者 Builder>
建造者模式(Builder Pattern)使用多个简单的对象一步一步构建成一个复杂的对象.这种类型的设计模式属于创建型模式,它提供了一种创建对象的最佳方式. 一个 Builder 类会一步一步构造最 ...
- NCUAP 利用java自带方法实现导入excel取数据
final JComponent parent = getModel().getContext().getEntranceUI(); JFileChooser chooser = new JFileC ...
- boost asio 学习(八) 网络基础 二进制写发送和接收
http://www.gamedev.net/blog/950/entry-2249317-a-guide-to-getting- started-with-boostasio?pg=9 8. Net ...