深度学习的优化算法,说白了就是梯度下降。每次的参数更新有两种方式。

一、

第一种,遍历全部数据集算一次损失函数,然后算函数对各个参数的梯度,更新梯度。这种方法每更新一次参数都要把数据集里的所有样本都看一遍,计算量开销大,计算速度慢,不支持在线学习,这称为Batch gradient descent,批梯度下降。

二、

另一种,每看一个数据就算一下损失函数,然后求梯度更新参数,这个称为随机梯度下降,stochastic gradient descent。这个方法速度比较快,但是收敛性能不太好,可能在最优点附近晃来晃去,hit不到最优点。两次参数的更新也有可能互相抵消掉,造成目标函数震荡的比较剧烈。

三、

为了克服两种方法的缺点,现在一般采用的是一种折中手段,mini-batch gradient decent,小批的梯度下降,这种方法把数据分为若干个批,按批来更新参数,这样,一个批中的一组数据共同决定了本次梯度的方向,下降起来就不容易跑偏,减少了随机性。另一方面因为批的样本数与整个数据集相比小了很多,计算量也不是很大。

基本上现在的梯度下降都是基于mini-batch的,所以Keras的模块中经常会出现batch_size,就是指这个。batch_size指的是一个batch有多少个样本,而不是由多少个batch

顺便说一句,Keras中用的优化器SGD是stochastic gradient descent的缩写,但不代表是一个样本就更新一回,还是基于mini-batch的。

------------------------------------------------

来源:

  1、keras中文文档: https://keras-cn.readthedocs.io/en/latest/for_beginners/concepts/

keras中的mini-batch gradient descent (转)的更多相关文章

  1. 几种梯度下降方法对比(Batch gradient descent、Mini-batch gradient descent 和 stochastic gradient descent)

    https://blog.csdn.net/u012328159/article/details/80252012 我们在训练神经网络模型时,最常用的就是梯度下降,这篇博客主要介绍下几种梯度下降的变种 ...

  2. flink 批量梯度下降算法线性回归参数求解(Linear Regression with BGD(batch gradient descent) )

    1.线性回归 假设线性函数如下: 假设我们有10个样本x1,y1),(x2,y2).....(x10,y10),求解目标就是根据多个样本求解theta0和theta1的最优值. 什么样的θ最好的呢?最 ...

  3. 批量梯度下降(Batch gradient descent) C++

    At each step the weight vector is moved in the direction of the greatest rate of decrease of the err ...

  4. Batch Gradient Descent vs. Stochastic Gradient Descent

    梯度下降法(Gradient Descent)是用于最小化代价函数的方法. When $a \ne 0$, there are two solutions to \(ax^2 + bx + c = 0 ...

  5. batch gradient descent(批量梯度下降) 和 stochastic gradient descent(随机梯度下降)

    批量梯度下降是一种对参数的update进行累积,然后批量更新的一种方式.用于在已知整个训练集时的一种训练方式,但对于大规模数据并不合适. 随机梯度下降是一种对参数随着样本训练,一个一个的及时updat ...

  6. 随机梯度下降(Stochastic gradient descent)和 批量梯度下降(Batch gradient descent )的公式对比、实现对比[转]

    梯度下降(GD)是最小化风险函数.损失函数的一种常用方法,随机梯度下降和批量梯度下降是两种迭代求解思路,下面从公式和实现的角度对两者进行分析,如有哪个方面写的不对,希望网友纠正. 下面的h(x)是要拟 ...

  7. 【转】 随机梯度下降(Stochastic gradient descent)和 批量梯度下降(Batch gradient descent )的公式对比、实现对比

    梯度下降(GD)是最小化风险函数.损失函数的一种常用方法,随机梯度下降和批量梯度下降是两种迭代求解思路,下面从公式和实现的角度对两者进行分析,如有哪个方面写的不对,希望网友纠正. 下面的h(x)是要拟 ...

  8. 机器学习-随机梯度下降(Stochastic gradient descent)和 批量梯度下降(Batch gradient descent )

    梯度下降(GD)是最小化风险函数.损失函数的一种常用方法,随机梯度下降和批量梯度下降是两种迭代求解思路,下面从公式和实现的角度对两者进行分析,如有哪个方面写的不对,希望网友纠正. 下面的h(x)是要拟 ...

  9. 【论文翻译】An overiview of gradient descent optimization algorithms

    这篇论文最早是一篇2016年1月16日发表在Sebastian Ruder的博客.本文主要工作是对这篇论文与李宏毅课程相关的核心部分进行翻译. 论文全文翻译: An overview of gradi ...

随机推荐

  1. c# NPOI 导出EXCEL (在下方显示图片)

    需要引入dll文件 也可以在NuGet里面管理(推荐) 比较方便 . using System; using System.Collections.Generic; using System.Linq ...

  2. 152. Maximum Product Subarray最大乘积子数组/是否连续

    [抄题]: Given an integer array nums, find the contiguous subarray within an array (containing at least ...

  3. CentOS 7 查询yum安装的软件及路径

    来源:CentOS 7 查询yum安装的软件及路径 先执行下面的命令,查看所有的已安装软件名称. rpm -qa 然后执行 rpm -ql 软件名称 就可以显示软件的安装路径.   [root@loc ...

  4. Python开发——数据类型【元祖】

    元祖的定义 tu = (11,22,33,44,) print(tu) # (11, 22, 33, 44) tu = tuple((11,22,33,44,)) print(tu) # (11, 2 ...

  5. robotframework手机号随机产生脚本

    首先,要导入使用库 random; ${phone} Evaluate random.choice(['139','188','185','136','158','151'])+"" ...

  6. Connection lost: The server closed the connection

    想必很多初学者都会遇到这个问题 其实很简单.mysql有个机制,就是8小时无通信,myslq就会自动关闭数据; 解决方案(2选1): 或者: 1.定时去做一个查询,就是 select * from X ...

  7. java多线程系列13 设计模式 Future 模式

    Future 模式 类似于ajax请求  页面异步的进行后台请求 用户无需等待请求的结果 就可以继续浏览或者操作 核心就是:去除了主函数的等待时间,并使得原本需要等待的时间段可以用于处理其他业务逻辑 ...

  8. 第二次spring会议

    今天所做之事: 我用C#用DelectText对行数进行了定义,刚开始写代码有点无从下手. 遇到的问题:刚开始用datagridView进行了文本的输入,但是它更适合EXCEL之类的数据计算不符合我们 ...

  9. delphi 中record 的类操作符重载简介

    今天简单介绍一下 delphi 中record 的类操作符重载使用,就是如何 实现 record 之间的简单操作. 关于类操作符重载 ,大家可以看官方的文档. Delphi allows certai ...

  10. Selenium webdriver操作日历控件

    一般的日期控件都是input标签下弹出来的,如果使用webdriver 去设置日期, 1. 定位到该input 2. 使用sendKeys 方法 比如:使用定位: driver.findElement ...