[luogu3978][bzoj4001][TJOI2005]概率论【基尔霍夫矩阵+卡特兰数】
题目描述
为了提高智商,ZJY开始学习概率论。有一天,她想到了这样一个问题:对于一棵随机生成的n个结点的有根二叉树(所有互相不同构的形态等概率出现),它的叶子节点数的期望是多少呢?
判断两棵树是否同构的伪代码如下:
题解
样例\(1\)是这个意思
我们需要解出两部分的答案,\(f(n)\)表示\(i\)个节点的树的个数,这个就是经典的卡特兰数为了方便计算我们将通项公式写成\(f(n)=\frac{C^n_(2n)}{n+1}\)的形式。
我们在定义\(g(n)\)表示\(i\)个节点中所有形态的树的叶节点总数。
我们打表发现有规律是\(g(n)=n\times f(n-1)\)。
给出两种证明:
关于规律的证明1
- 对于每一个\(n\)个节点的二叉树,如果里面有\(k\)个叶节点,那么我们分别把\(k\)个叶子节点删去,那么就会得到\(k\)个\(n-1\)个点的二叉树。
- 而每一棵\(n-1\)个点的二叉树恰好有\(n\)个位置可以悬挂一个新的叶子节点,所以每棵\(n-1\)个点的二叉树倍得到了\(n\)次;
- 那么就是就可以得到\(g(n)=n\times f(n)\)。
关于规律的证明2
详细请见Miskcoo大大的博客
ac代码
#include <bits/stdc++.h>
using namespace std;
dd n;
int main(){
scanf("%lf",&n);
printf("%.9f\n",(n*n+n)/(4*n-2));
return 0;
}
[luogu3978][bzoj4001][TJOI2005]概率论【基尔霍夫矩阵+卡特兰数】的更多相关文章
- bzoj 1002 [FJOI2007]轮状病毒 高精度&&找规律&&基尔霍夫矩阵
1002: [FJOI2007]轮状病毒 Time Limit: 1 Sec Memory Limit: 162 MBSubmit: 2234 Solved: 1227[Submit][Statu ...
- BZOJ 1002: [FJOI2007]轮状病毒【生成树的计数与基尔霍夫矩阵简单讲解+高精度】
1002: [FJOI2007]轮状病毒 Time Limit: 1 Sec Memory Limit: 162 MBSubmit: 5577 Solved: 3031[Submit][Statu ...
- 【BZOJ】1002:轮状病毒(基尔霍夫矩阵【附公式推导】或打表)
Description 轮状病毒有很多变种,所有轮状病毒的变种都是从一个轮状基产生的.一个N轮状基由圆环上N个不同的基原子和圆心处一个核原子构成的,2个原子之间的边表示这2个原子之间的信息通道.如下图 ...
- BZOJ1002 FJOI2007 轮状病毒 【基尔霍夫矩阵+高精度】
BZOJ1002 FJOI2007 轮状病毒 Description 轮状病毒有很多变种,所有轮状病毒的变种都是从一个轮状基产生的.一个N轮状基由圆环上N个不同的基原子和圆心处一个核原子构成的,2个原 ...
- BZOJ 4031 HEOI2015 小Z的房间 基尔霍夫矩阵+行列式+高斯消元 (附带行列式小结)
原题链接:http://www.lydsy.com/JudgeOnline/problem.php?id=4031 Description 你突然有了一个大房子,房子里面有一些房间.事实上,你的房子可 ...
- bzoj 1002 找规律(基尔霍夫矩阵)
网上说的是什么基尔霍夫矩阵,没学过这个,打个表找下规律,发现 w[i]=3*w[i-1]-w[i-2]+2; 然后写个高精直接递推就行了 //By BLADEVIL var n :longint; a ...
- [bzoj1002] [FJOI2007]轮状病毒轮状病毒(基尔霍夫矩阵)
Description 轮状病毒有很多变种,所有轮状病毒的变种都是从一个轮状基产生的.一个N轮状基由圆环上N个不同的基原子 和圆心处一个核原子构成的,2个原子之间的边表示这2个原子之间的信息通道.如下 ...
- 无向图生成树计数 基尔霍夫矩阵 SPOJ Highways
基尔霍夫矩阵 https://blog.csdn.net/w4149/article/details/77387045 https://blog.csdn.net/qq_29963431/articl ...
- bzoj1002: [FJOI2007]轮状病毒(基尔霍夫矩阵)
1002: [FJOI2007]轮状病毒 题目:传送门 题解: 决定开始板刷的第一题... 看到这题的时候想:这不就是求有多少种最小生成树的方式吗? 不会啊!!!%题解... 什么鬼?基尔霍夫矩阵?? ...
随机推荐
- 【转】Oracle中的decode在mysql中的等价实现
以前用的Oracle,里面的Decode函数非常好用,那MySql实现同样的功能用什么呢?——MySql使用if的语法来支持. 格式:IF(expr1,expr2,expr3)如果expr1是TRUE ...
- 【php增删改查实例】第十二节 - 数据删除功能
1.单条数据删除 思路:首先,需要也只能允许用户勾选一条数据,然后弹出一个确认框,问用户是否真的要删除?如果是,就把ID传递到PHP,然后写一个delete语句,通过ID去删除即可. 画好了按钮之后, ...
- cmd命令入门
第一类: 介绍原生的DOS 首先在cmd命令输入help,看到如下图的结果,这里展示的原生的DOS命令. 这里列出了一些命令,可以自己试试的玩.一般看到一个命令后,如果没有说明文档,你就尝试的在其命令 ...
- FreeRTOS 任务与调度器(1)
前言: Task.c和Task.h文件内是FreeRTOS的核心内容,所有任务和调度器相关的API函数都在这个文件中,它包括下图这些内容FreeRTOS文件如下: Task.c和Task.h文件内是F ...
- 【精】【入门篇】js正则表达式
前言 最近有了点时间,就回头看了一下<学习正则表达式>这本书.怎么说呢,这本书适合从零开始学习正则表达式或者有一点基础但是想要加强这方面能力的读者.这本书的风格是“实践出真知”,使用归纳方 ...
- 5分钟入门自动化测试——你应该学会的Postman用法(2)
前言 之前的一篇文章<你应该学会的Postman用法>,主要介绍了postman的一些高级的用法,便于日常开发和调试使用,本文的基础是对postman的基本使用以及一些高级用法有一定的了解 ...
- Docker inspect - format格式化输出 - 运维笔记
Docker --format 参数提供了基于 Go模板 的日志格式化输出辅助功能,并提供了一些内置的增强函数. 什么是模板?上图是大家熟悉的 MVC 框架(Model View Controller ...
- Windows10下手工强制清理删掉安装版的JRE8导致java.exe无法运行的解决办法
error:could not open xxxx.jvm.cfg 参考:https://blog.csdn.net/u010102493/article/details/18425267 1.搜索并 ...
- 推荐一个php7+ mongodb三方类
373 次阅读 · 读完需要 8 分钟 5 由于项目需要,把项目升级到了php7.但是升级了之后发现mongo扩展不能用了.php7.0以上只支持mongodb扩展了.而mongodb扩展的驱 ...
- [转帖]Intel新一代Xeon完整曝光
AMD已经官宣7nm工艺的第二代EPYC霄龙服务器平台,今年上半年就会大规模出货,而在Intel这边,由于10nm工艺进展还是不够快,在服务器上还是需要14nm继续打天下,而且还有两代14nm工艺产品 ...