BZOJ

洛谷

这个数据范围。。考虑暴力一些把各种信息都记下来。不妨直接令\(f[i][j][k][0/1]\)表示当前为点\(i\),离\(i\)最近的建了伐木场的\(i\)的祖先为\(j\),\(i\)及\(i\)子树一共建了\(k\)个伐木场。\(0/1\)表示点\(i\)是否建了伐木场。

发现对于\(i\)的子树里的点\(v\),\(v\)建没建伐木场无所谓,需要的是它建了多少。所以DP完\(i\)后,\(i\)只保留\(f[i]...[0/1]\)中较小的一个作为点\(i\)的答案即可。

转移就是背包,暴力些即可。复杂度\(O(n^2k^2)\)。

既然都这么暴力地记录祖先了,不妨转移\(f[i]\)的时候直接DFS一遍子树(强制\(i\)选)。即令\(f[i][j]\)表示\(i\)子树共用\(j\)个伐木场的最小代价。这样虽然复杂度还是\(O(n^2k^2)\),但只需要二维的DP数组。

另外DP完当前点\(i\)后,是保留强制选\(i\)的DP值(不选\(i\)的也没法求啊);从其它点转移的时候,就无所谓取不取了。

为了方便,可以令\(f\)表示最大贡献(与到根节点相比少花多少代价)啊。

感觉还是有点迷...

//868kb	36ms
#include <cstdio>
#include <cctype>
#include <cstring>
#include <algorithm>
#define gc() getchar()
typedef long long LL;
const int N=105,INF=2e9; int K,w[N],dep[N],sz[N],H[N],nxt[N],f[N][55],g[N][55]; inline int read()
{
int now=0;register char c=gc();
for(;!isdigit(c);c=gc());
for(;isdigit(c);now=now*10+c-'0',c=gc());
return now;
}
inline void AE(int u,int v)
{
nxt[v]=H[u], H[u]=v;
}
void DP(int x,int dep_anc)
{
f[x][0]=dep_anc*w[x];
for(int v=H[x]; v; v=nxt[v])
{
DP(v,dep_anc);
for(int i=std::min(sz[x],K); ~i; --i)
for(int j=0; j<=std::min(sz[v],i); ++j)
f[x][i]=std::max(f[x][i],f[x][i-j]+f[v][j]);
}
for(int i=1; i<=K; ++i) f[x][i]=std::max(f[x][i],g[x][i]);//g[x][0]=0 (meaningless)
}
void DFS(int x)
{
sz[x]=1;
for(int v=H[x]; v; v=nxt[v]) dep[v]+=dep[x], DFS(v), sz[x]+=sz[v];
memset(f,0,sizeof f);
for(int v=H[x]; v; v=nxt[v])
{
DP(v,dep[x]);
for(int i=std::min(sz[x],K); ~i; --i)
for(int j=0; j<=std::min(sz[v],i); ++j)
g[x][i]=std::max(g[x][i],g[x][i-j]+f[v][j]);
}
if(x) for(int i=K,v=dep[x]*w[x]; i; --i) g[x][i]=g[x][i-1]+v;//在此之前未算入x(当然0本身不用算入)
// g[x][0]=0;
} int main()
{
int n=read(); K=read();
for(int i=1; i<=n; ++i) w[i]=read(),AE(read(),i),dep[i]=read();
DFS(0);
int ans=0,tmp=0;
for(int i=0; i<=K; ++i) tmp=std::max(tmp,g[0][i]);
for(int i=1; i<=n; ++i) ans+=dep[i]*w[i];
printf("%d\n",ans-tmp); return 0;
}

BZOJ.1812.[IOI2005]Riv 河流(树形背包)的更多相关文章

  1. BZOJ 1812: [Ioi2005]riv( 树形dp )

    树背包, 左儿子右兄弟来表示树, dp(x, y, z)表示结点x, x的子树及x的部分兄弟共建y个伐木场, 离x最近的伐木场是z时的最小代价. 时间复杂度O(N^2*K^2) ----------- ...

  2. 1812: [Ioi2005]riv

    1812: [Ioi2005]riv Time Limit: 10 Sec Memory Limit: 64 MB Submit: 635 Solved: 388 [Submit][Status][D ...

  3. bzoj1812 [IOI2005]riv河流

    题目链接 problem 给出一棵树,每个点有点权,每条边有边权.0号点为根,每个点的代价是这个点的点权\(\times\)该点到根路径上的边权和. 现在可以选择最多K个点.使得每个点的代价变为:这个 ...

  4. [LUOGU] P3354 [IOI2005]Riv 河流

    题目描述 几乎整个Byteland王国都被森林和河流所覆盖.小点的河汇聚到一起,形成了稍大点的河.就这样,所有的河水都汇聚并流进了一条大河,最后这条大河流进了大海.这条大河的入海口处有一个村庄--名叫 ...

  5. P3354 [IOI2005]Riv 河流

    树形dp,设f[i][j][k]表示第i个点的子树中选择j个点作为伐木场,而且k是建了伐木场的最浅的i的祖先的情况下,最小的收益. 这种题还要练一下,咕咕 然后转移可以n4方做. // luogu-j ...

  6. 【[IOI2005]Riv 河流】

    趁魏佬去英语演讲了,赶快%%%%%%%%%%%%%%魏佬 基本上是照着魏佬的代码写的 这其实还是一个树上背包 我们用\(dp[i][j][k]\)表示在以\(i\)为根的子树里,我们修建\(k\)个伐 ...

  7. 洛谷P3354 [IOI2005]Riv 河流——“承诺”DP

    题目:https://www.luogu.org/problemnew/show/P3354 状态中要记录一个“承诺”,只需相同承诺之间相互转移即可: 然后就是树形DP的套路了. 代码如下: #inc ...

  8. [IOI2005]Riv河流

    题目链接:洛谷,BZOJ 前置知识:莫得 题解 直接考虑dp.首先想法是设状态 \(dp[u][i]\) 表示u的子树内建 \(i\) 个伐木场且子树内木头都运到某个伐木场的最小花费.发现这样的状态是 ...

  9. [IOI2005]Riv 河流

    https://www.zybuluo.com/ysner/note/1300088 题面 有一棵\(n\)个点的树,现在在上面放\(k\)个标记,使得每个点的权值乘上自己到最近的标记祖先的距离的和最 ...

随机推荐

  1. postMan测试https接口

    一.如何安装postman? Postman下载地址https://www.getpostman.com/ 我下载的版本是Postman-win64-5.0.0-Setup.exe 这是免安装的,可以 ...

  2. 饮冰三年-人工智能-Python-14Python基础之变量与函数

    1:函数:函数是逻辑结构化和过程化的一种编程方法.函数即变量 #参数组:**字典 *列表 def test(x,*args): print(args); print(args[0]); print(& ...

  3. 通过awk 和 sed 将多余的列剔除

    通过awk 和 sed 将多余的列剔除 名词注释: awk -F 指定分隔符 OFS 指定输出分隔符 sed sed "s/|/test/2" a.log 将第二个 | 线替换为 ...

  4. 记录mysql正在执行的SQL语句

    show variables like "general_log%"; SET GLOBAL general_log = 'ON';SET GLOBAL general_log = ...

  5. gradle编译命令 & 自动打包等

    ./gradlew -v 版本号,首次运行,没有gradle的要下载的哦. ./gradlew clean 删除HelloWord/app目录下的build文件夹 ./gradlew build 检查 ...

  6. org.apache.zookeeper.KeeperException$ConnectionLossException: KeeperErrorCode = ConnectionLoss for /eclipse20171118

    1:如果有一天,你有幸看到了这个错误,也许你像我一样low,因为此时,你已经准备开发Zookeeper程序了,却还没有把Zookeeper的服务启动起来. org.apache.zookeeper.K ...

  7. windows下面使用nssm设置新的服务实现开机自启等

    1.下载: http://nssm.cc/download/?page=download 2.解压: 根据自己的系统选择相应的32bit或者64bit,然后将相应的可执行文件拷贝到系统环境中.配置环境 ...

  8. 基于Postman的API自动化测试

    https://segmentfault.com/a/1190000005055899 1. 安装 两种安装方式,我热衷于以chrome插件形式安装 Chrome插件 Mac App 2. 发送请求 ...

  9. 如何自动设置网页中meta节点keywords属性-【SEO】

    在处理网页的SEO时,经常需要设置meta节点中keywords的属性. 如果是UGC产生内容的话,对于这个字段可以由用户或编辑手工设置相关的标签或关键词来进行. 但对于MGC(机器产生内容)的内容的 ...

  10. linux下在root用户登陆状态下,以指定用户运行脚本程序实现方式

    aaarticlea/png;base64,iVBORw0KGgoAAAANSUhEUgAAAMcAAABKCAIAAACASdeXAAAEoUlEQVR4nO2dy7WlIBBFTYIoSIIkmD ...