给你一个凸多边形,问在里面距离凸边形最远的点。

方法就是二分这个距离,然后将对应的半平面沿着法向平移这个距离,然后判断是否交集为空,为空说明这个距离太大了,否则太小了,二分即可。

#pragma warning(disable:4996)
#include <iostream>
#include <cstring>
#include <cstdio>
#include <vector>
#include <cmath>
#include <string>
#include <algorithm>
using namespace std; #define maxn 2500
#define eps 1e-7 int n; int dcmp(double x){
return (x > eps) - (x < -eps);
} struct Point
{
double x, y;
Point(){}
Point(double _x, double _y) :x(_x), y(_y){}
Point operator + (const Point &b) const{
return Point(x + b.x, y + b.y);
}
Point operator - (const Point &b) const{
return Point(x - b.x, y - b.y);
}
Point operator *(double d) const{
return Point(x*d, y*d);
}
Point operator /(double d) const{
return Point(x / d, y / d);
}
double det(const Point &b) const{
return x*b.y - y*b.x;
}
double dot(const Point &b) const{
return x*b.x + y*b.y;
}
Point rot90(){
return Point(-y, x);
}
Point norm(){
double len=sqrt(this->dot(*this));
return Point(x, y) / len;
}
void read(){
scanf("%lf%lf", &x, &y);
}
}; #define cross(p1,p2,p3) ((p2.x-p1.x)*(p3.y-p1.y)-(p3.x-p1.x)*(p2.y-p1.y))
#define crossOp(p1,p2,p3) (dcmp(cross(p1,p2,p3))) Point isSS(Point p1, Point p2, Point q1, Point q2){
double a1 = cross(q1, q2, p1), a2 = -cross(q1, q2, p2);
return (p1*a2 + p2*a1) / (a1 + a2);
} struct Border
{
Point p1, p2;
double alpha;
void setAlpha(){
alpha = atan2(p2.y - p1.y, p2.x - p1.x);
}
}; bool operator < (const Border &a,const Border &b) {
int c = dcmp(a.alpha - b.alpha);
if (c != 0) {
return c == 1;
}
else {
return crossOp(b.p1, b.p2, a.p1) > 0;
}
} bool operator == (const Border &a, const Border &b){
return dcmp(a.alpha - b.alpha) == 0;
} Point isBorder(const Border &a, const Border &b){
return isSS(a.p1, a.p2, b.p1, b.p2);
} Border border[maxn];
Border que[maxn];
int qh, qt;
// check函数判断的是新加的半平面和由a,b两个半平面产生的交点的方向,若在半平面的左侧返回True
bool check(const Border &a, const Border &b, const Border &me){
Point is = isBorder(a, b);
return crossOp(me.p1, me.p2, is) > 0;
} bool convexIntersection()
{
qh = qt = 0;
sort(border, border + n);
n = unique(border, border + n) - border;
for (int i = 0; i < n; i++){
Border cur = border[i];
while (qh + 1 < qt&&!check(que[qt - 2], que[qt - 1], cur)) --qt;
while (qh + 1 < qt&&!check(que[qh], que[qh + 1], cur)) ++qh;
que[qt++] = cur;
}
while (qh + 1 < qt&&!check(que[qt - 2], que[qt - 1], que[qh])) --qt;
while (qh + 1 < qt&&!check(que[qh], que[qh + 1], que[qt - 1])) ++qh;
return qt - qh > 2;
} Point ps[maxn]; bool judge(double x)
{
for (int i = 0; i < n; i++){
border[i].p1 = ps[i];
border[i].p2 = ps[(i + 1) % n];
}
for (int i = 0; i < n; i++){
Point vec = border[i].p2 - border[i].p1;
vec=vec.rot90().norm();
vec = vec*x;
border[i].p1 = border[i].p1 + vec;
border[i].p2 = border[i].p2 + vec;
border[i].setAlpha();
}
return convexIntersection();
} int main()
{
while (cin>>n&&n)
{
for (int i = 0; i < n; i++){
ps[i].read();
}
double l=0, r=100000000;
while (dcmp(r-l)>0){
double mid = (l + r) / 2;
if (judge(mid)) l = mid;
else r = mid;
}
printf("%.6lf\n", l);
}
return 0;
}

POJ3525 Most Distant Point from the Sea(半平面交)的更多相关文章

  1. POJ 3525 Most Distant Point from the Sea [半平面交 二分]

    Most Distant Point from the Sea Time Limit: 5000MS   Memory Limit: 65536K Total Submissions: 5153   ...

  2. LA 3890 Most Distant Point from the Sea(半平面交)

    Most Distant Point from the Sea [题目链接]Most Distant Point from the Sea [题目类型]半平面交 &题解: 蓝书279 二分答案 ...

  3. POJ 3525 Most Distant Point from the Sea (半平面交)

    Description The main land of Japan called Honshu is an island surrounded by the sea. In such an isla ...

  4. poj3525 Most Distant Point from the Sea

    题目描述: vjudge POJ 题解: 二分答案+半平面交. 半径范围在0到5000之间二分,每次取$mid$然后平移所有直线,判断半平面交面积是否为零. 我的eps值取的是$10^{-12}$,3 ...

  5. POJ 3525 Most Distant Point from the Sea (半平面交+二分)

    Most Distant Point from the Sea Time Limit: 5000MS   Memory Limit: 65536K Total Submissions: 3476   ...

  6. POJ 3525/UVA 1396 Most Distant Point from the Sea(二分+半平面交)

    Description The main land of Japan called Honshu is an island surrounded by the sea. In such an isla ...

  7. POJ3525-Most Distant Point from the Sea(二分+半平面交)

    Most Distant Point from the Sea Time Limit: 5000MS   Memory Limit: 65536K Total Submissions: 3955   ...

  8. 【POJ 3525】Most Distant Point from the Sea(直线平移、半平面交)

    按逆时针顺序给出n个点,求它们组成的多边形的最大内切圆半径. 二分这个半径,将所有直线向多边形中心平移r距离,如果半平面交不存在那么r大了,否则r小了. 平移直线就是对于向量ab,因为是逆时针的,向中 ...

  9. 简单几何(半平面交+二分) LA 3890 Most Distant Point from the Sea

    题目传送门 题意:凸多边形的小岛在海里,问岛上的点到海最远的距离. 分析:训练指南P279,二分答案,然后整个多边形往内部收缩,如果半平面交非空,那么这些点构成半平面,存在满足的点. /******* ...

随机推荐

  1. C#学习笔记(补充)——扩展方法、事件

    (搬运自我在SegmentFault的博客) 一.扩展方法 扩展方法使你能够向现有类型"添加"方法,而无需创建新的派生类型.重新编译或以其他方式修改原始类型. 注意事项: 扩展方法 ...

  2. OC编写使用调试器

    OC编写使用调试器 编写代码免不了,Bug.那么Debug就是程序员的必备技能了.本文和大家一起探讨,如何在应用开发编写代码过程中,使用日志项消息:以及使用动作.条件.迭代控制增强断点. 记录信息 在 ...

  3. C语言实现冒泡排序法和选择排序法代码参考

    为了易用,我编写排序函数,这和直接在主调函数中用是差不多的. 我认为选择排序法更好理解!请注意 i 和 j ,在写代码时别弄错了,不然很难找到错误! 冒泡排序法 void sort(int * ar, ...

  4. DB2建立不记录日志的表

    )); ,'JACK'); ,'Timo'); -----建立无日日志表 --方法一:(表存在) CREATE TABLE TB_7 LIKE TB_6 NOT LOGGED INITIALLY; - ...

  5. C++11 常用语法

    1 新类型 C++ 11新增了long long和unsigned long long,以支持64bit宽度: 新增char16_t和char32_t以支持16位和32位字符表示: 增加了“原始”字符 ...

  6. SQLiteAPI函数详解

    使用的过程根据使用的函数大致分为如下几个过程: sqlite3_open() sqlite3_prepare() sqlite3_step() sqlite3_column() sqlite3_fin ...

  7. springboot常见应用属性

    # ===================================================================# COMMON SPRING BOOT PROPERTIES ...

  8. [shell基础]——if/for/while/until/case 语句

    for语句 do echo $loop done ` do echo $loop done for loop in `ls /tmp` do echo $loop done while语句 while ...

  9. 将项目初始化到git服务器

    使用的是GitLab来管理Git服务器; 步骤: 一. 先在服务器上创建一个新的项目(GitLab右上角的New project)

  10. mvc5引用ExtJS6

    mvc5引用ExtJS6 摘要:VisualStuio2015 asp.net mvc如何引用ExtJS6,使用BundleConfig. 首先下载ExtJS6.0 gpl版.ExtJS有自己的程序框 ...