给你一个凸多边形,问在里面距离凸边形最远的点。

方法就是二分这个距离,然后将对应的半平面沿着法向平移这个距离,然后判断是否交集为空,为空说明这个距离太大了,否则太小了,二分即可。

#pragma warning(disable:4996)
#include <iostream>
#include <cstring>
#include <cstdio>
#include <vector>
#include <cmath>
#include <string>
#include <algorithm>
using namespace std; #define maxn 2500
#define eps 1e-7 int n; int dcmp(double x){
return (x > eps) - (x < -eps);
} struct Point
{
double x, y;
Point(){}
Point(double _x, double _y) :x(_x), y(_y){}
Point operator + (const Point &b) const{
return Point(x + b.x, y + b.y);
}
Point operator - (const Point &b) const{
return Point(x - b.x, y - b.y);
}
Point operator *(double d) const{
return Point(x*d, y*d);
}
Point operator /(double d) const{
return Point(x / d, y / d);
}
double det(const Point &b) const{
return x*b.y - y*b.x;
}
double dot(const Point &b) const{
return x*b.x + y*b.y;
}
Point rot90(){
return Point(-y, x);
}
Point norm(){
double len=sqrt(this->dot(*this));
return Point(x, y) / len;
}
void read(){
scanf("%lf%lf", &x, &y);
}
}; #define cross(p1,p2,p3) ((p2.x-p1.x)*(p3.y-p1.y)-(p3.x-p1.x)*(p2.y-p1.y))
#define crossOp(p1,p2,p3) (dcmp(cross(p1,p2,p3))) Point isSS(Point p1, Point p2, Point q1, Point q2){
double a1 = cross(q1, q2, p1), a2 = -cross(q1, q2, p2);
return (p1*a2 + p2*a1) / (a1 + a2);
} struct Border
{
Point p1, p2;
double alpha;
void setAlpha(){
alpha = atan2(p2.y - p1.y, p2.x - p1.x);
}
}; bool operator < (const Border &a,const Border &b) {
int c = dcmp(a.alpha - b.alpha);
if (c != 0) {
return c == 1;
}
else {
return crossOp(b.p1, b.p2, a.p1) > 0;
}
} bool operator == (const Border &a, const Border &b){
return dcmp(a.alpha - b.alpha) == 0;
} Point isBorder(const Border &a, const Border &b){
return isSS(a.p1, a.p2, b.p1, b.p2);
} Border border[maxn];
Border que[maxn];
int qh, qt;
// check函数判断的是新加的半平面和由a,b两个半平面产生的交点的方向,若在半平面的左侧返回True
bool check(const Border &a, const Border &b, const Border &me){
Point is = isBorder(a, b);
return crossOp(me.p1, me.p2, is) > 0;
} bool convexIntersection()
{
qh = qt = 0;
sort(border, border + n);
n = unique(border, border + n) - border;
for (int i = 0; i < n; i++){
Border cur = border[i];
while (qh + 1 < qt&&!check(que[qt - 2], que[qt - 1], cur)) --qt;
while (qh + 1 < qt&&!check(que[qh], que[qh + 1], cur)) ++qh;
que[qt++] = cur;
}
while (qh + 1 < qt&&!check(que[qt - 2], que[qt - 1], que[qh])) --qt;
while (qh + 1 < qt&&!check(que[qh], que[qh + 1], que[qt - 1])) ++qh;
return qt - qh > 2;
} Point ps[maxn]; bool judge(double x)
{
for (int i = 0; i < n; i++){
border[i].p1 = ps[i];
border[i].p2 = ps[(i + 1) % n];
}
for (int i = 0; i < n; i++){
Point vec = border[i].p2 - border[i].p1;
vec=vec.rot90().norm();
vec = vec*x;
border[i].p1 = border[i].p1 + vec;
border[i].p2 = border[i].p2 + vec;
border[i].setAlpha();
}
return convexIntersection();
} int main()
{
while (cin>>n&&n)
{
for (int i = 0; i < n; i++){
ps[i].read();
}
double l=0, r=100000000;
while (dcmp(r-l)>0){
double mid = (l + r) / 2;
if (judge(mid)) l = mid;
else r = mid;
}
printf("%.6lf\n", l);
}
return 0;
}

POJ3525 Most Distant Point from the Sea(半平面交)的更多相关文章

  1. POJ 3525 Most Distant Point from the Sea [半平面交 二分]

    Most Distant Point from the Sea Time Limit: 5000MS   Memory Limit: 65536K Total Submissions: 5153   ...

  2. LA 3890 Most Distant Point from the Sea(半平面交)

    Most Distant Point from the Sea [题目链接]Most Distant Point from the Sea [题目类型]半平面交 &题解: 蓝书279 二分答案 ...

  3. POJ 3525 Most Distant Point from the Sea (半平面交)

    Description The main land of Japan called Honshu is an island surrounded by the sea. In such an isla ...

  4. poj3525 Most Distant Point from the Sea

    题目描述: vjudge POJ 题解: 二分答案+半平面交. 半径范围在0到5000之间二分,每次取$mid$然后平移所有直线,判断半平面交面积是否为零. 我的eps值取的是$10^{-12}$,3 ...

  5. POJ 3525 Most Distant Point from the Sea (半平面交+二分)

    Most Distant Point from the Sea Time Limit: 5000MS   Memory Limit: 65536K Total Submissions: 3476   ...

  6. POJ 3525/UVA 1396 Most Distant Point from the Sea(二分+半平面交)

    Description The main land of Japan called Honshu is an island surrounded by the sea. In such an isla ...

  7. POJ3525-Most Distant Point from the Sea(二分+半平面交)

    Most Distant Point from the Sea Time Limit: 5000MS   Memory Limit: 65536K Total Submissions: 3955   ...

  8. 【POJ 3525】Most Distant Point from the Sea(直线平移、半平面交)

    按逆时针顺序给出n个点,求它们组成的多边形的最大内切圆半径. 二分这个半径,将所有直线向多边形中心平移r距离,如果半平面交不存在那么r大了,否则r小了. 平移直线就是对于向量ab,因为是逆时针的,向中 ...

  9. 简单几何(半平面交+二分) LA 3890 Most Distant Point from the Sea

    题目传送门 题意:凸多边形的小岛在海里,问岛上的点到海最远的距离. 分析:训练指南P279,二分答案,然后整个多边形往内部收缩,如果半平面交非空,那么这些点构成半平面,存在满足的点. /******* ...

随机推荐

  1. rails中ActionController::InvalidAuthenticityToken解决办法

    Ror代码 class FooController < ApplicationController protect_from_forgery :except => :index # you ...

  2. Mysql账号管理

    一 用户添加 通过insert 方式添加用户 insert into mysql.user(Host,User,Password) values("localhost"," ...

  3. arcgis离海距离的计算

    1.利用arctoolbox——要素——面转线工具,将县界提取出来. 2.对线要素编辑,利用“分割”工具对边界截断,而后融合成一条海岸线 3.利用分析工具——领域分析——近邻分析计算点到海岸线要素的距 ...

  4. hdu 5249 KPI

    题目连接 http://acm.hdu.edu.cn/showproblem.php?pid=5249 KPI Description 你工作以后, KPI 就是你的全部了. 我开发了一个服务,取得了 ...

  5. jquery 简单弹出层

    预定义html代码:没有 所有代码通过js生成和移除. 预定义css .z-popup-overlay{ width:100%; min-height: 100%; height:800px; pos ...

  6. Linux下安装MySQLdb模块

    1,查看是否已安装MySQLdb模块 进入python的命令行,输入 import MySQLdb 如果没有报错,证明此模块已经安装,可以跳过以下步骤. 2,下载最新的MySQLdb安装包: wget ...

  7. ExtJS FormPanel不执行校验

    经检查问题原因在于使用了 validator 属性. 使用validator属性,必须添加返回值.不添加返回值,就会出现FormPanel不执行校验的问题.

  8. js 获取字符串中最后一个斜杠后面的内容

    var str = "/asdasf/asfaewf/agaegr/trer/rhh"; var index = str .lastIndexOf("\/"); ...

  9. 64位Windows2003下如何正确发布VesnData.Net(VDN)

    64位windows2003下发布VDN,按照正常的步骤会出现:试图加载格式不正确的程序. (异常来自 HRESULT:0x8007000B)的错误. 按照下面的步骤进行处理: 1.如果安装了64位F ...

  10. 使用itunes同步ios时丢失照片恢复

    因没有备份,在使用同步功能后,发现照片被清空了,找到恢复方法,分享之! from:http://modmyi.com/forums/native-iphone-ipod-touch-app-discu ...