给你一个凸多边形,问在里面距离凸边形最远的点。

方法就是二分这个距离,然后将对应的半平面沿着法向平移这个距离,然后判断是否交集为空,为空说明这个距离太大了,否则太小了,二分即可。

#pragma warning(disable:4996)
#include <iostream>
#include <cstring>
#include <cstdio>
#include <vector>
#include <cmath>
#include <string>
#include <algorithm>
using namespace std; #define maxn 2500
#define eps 1e-7 int n; int dcmp(double x){
return (x > eps) - (x < -eps);
} struct Point
{
double x, y;
Point(){}
Point(double _x, double _y) :x(_x), y(_y){}
Point operator + (const Point &b) const{
return Point(x + b.x, y + b.y);
}
Point operator - (const Point &b) const{
return Point(x - b.x, y - b.y);
}
Point operator *(double d) const{
return Point(x*d, y*d);
}
Point operator /(double d) const{
return Point(x / d, y / d);
}
double det(const Point &b) const{
return x*b.y - y*b.x;
}
double dot(const Point &b) const{
return x*b.x + y*b.y;
}
Point rot90(){
return Point(-y, x);
}
Point norm(){
double len=sqrt(this->dot(*this));
return Point(x, y) / len;
}
void read(){
scanf("%lf%lf", &x, &y);
}
}; #define cross(p1,p2,p3) ((p2.x-p1.x)*(p3.y-p1.y)-(p3.x-p1.x)*(p2.y-p1.y))
#define crossOp(p1,p2,p3) (dcmp(cross(p1,p2,p3))) Point isSS(Point p1, Point p2, Point q1, Point q2){
double a1 = cross(q1, q2, p1), a2 = -cross(q1, q2, p2);
return (p1*a2 + p2*a1) / (a1 + a2);
} struct Border
{
Point p1, p2;
double alpha;
void setAlpha(){
alpha = atan2(p2.y - p1.y, p2.x - p1.x);
}
}; bool operator < (const Border &a,const Border &b) {
int c = dcmp(a.alpha - b.alpha);
if (c != 0) {
return c == 1;
}
else {
return crossOp(b.p1, b.p2, a.p1) > 0;
}
} bool operator == (const Border &a, const Border &b){
return dcmp(a.alpha - b.alpha) == 0;
} Point isBorder(const Border &a, const Border &b){
return isSS(a.p1, a.p2, b.p1, b.p2);
} Border border[maxn];
Border que[maxn];
int qh, qt;
// check函数判断的是新加的半平面和由a,b两个半平面产生的交点的方向,若在半平面的左侧返回True
bool check(const Border &a, const Border &b, const Border &me){
Point is = isBorder(a, b);
return crossOp(me.p1, me.p2, is) > 0;
} bool convexIntersection()
{
qh = qt = 0;
sort(border, border + n);
n = unique(border, border + n) - border;
for (int i = 0; i < n; i++){
Border cur = border[i];
while (qh + 1 < qt&&!check(que[qt - 2], que[qt - 1], cur)) --qt;
while (qh + 1 < qt&&!check(que[qh], que[qh + 1], cur)) ++qh;
que[qt++] = cur;
}
while (qh + 1 < qt&&!check(que[qt - 2], que[qt - 1], que[qh])) --qt;
while (qh + 1 < qt&&!check(que[qh], que[qh + 1], que[qt - 1])) ++qh;
return qt - qh > 2;
} Point ps[maxn]; bool judge(double x)
{
for (int i = 0; i < n; i++){
border[i].p1 = ps[i];
border[i].p2 = ps[(i + 1) % n];
}
for (int i = 0; i < n; i++){
Point vec = border[i].p2 - border[i].p1;
vec=vec.rot90().norm();
vec = vec*x;
border[i].p1 = border[i].p1 + vec;
border[i].p2 = border[i].p2 + vec;
border[i].setAlpha();
}
return convexIntersection();
} int main()
{
while (cin>>n&&n)
{
for (int i = 0; i < n; i++){
ps[i].read();
}
double l=0, r=100000000;
while (dcmp(r-l)>0){
double mid = (l + r) / 2;
if (judge(mid)) l = mid;
else r = mid;
}
printf("%.6lf\n", l);
}
return 0;
}

POJ3525 Most Distant Point from the Sea(半平面交)的更多相关文章

  1. POJ 3525 Most Distant Point from the Sea [半平面交 二分]

    Most Distant Point from the Sea Time Limit: 5000MS   Memory Limit: 65536K Total Submissions: 5153   ...

  2. LA 3890 Most Distant Point from the Sea(半平面交)

    Most Distant Point from the Sea [题目链接]Most Distant Point from the Sea [题目类型]半平面交 &题解: 蓝书279 二分答案 ...

  3. POJ 3525 Most Distant Point from the Sea (半平面交)

    Description The main land of Japan called Honshu is an island surrounded by the sea. In such an isla ...

  4. poj3525 Most Distant Point from the Sea

    题目描述: vjudge POJ 题解: 二分答案+半平面交. 半径范围在0到5000之间二分,每次取$mid$然后平移所有直线,判断半平面交面积是否为零. 我的eps值取的是$10^{-12}$,3 ...

  5. POJ 3525 Most Distant Point from the Sea (半平面交+二分)

    Most Distant Point from the Sea Time Limit: 5000MS   Memory Limit: 65536K Total Submissions: 3476   ...

  6. POJ 3525/UVA 1396 Most Distant Point from the Sea(二分+半平面交)

    Description The main land of Japan called Honshu is an island surrounded by the sea. In such an isla ...

  7. POJ3525-Most Distant Point from the Sea(二分+半平面交)

    Most Distant Point from the Sea Time Limit: 5000MS   Memory Limit: 65536K Total Submissions: 3955   ...

  8. 【POJ 3525】Most Distant Point from the Sea(直线平移、半平面交)

    按逆时针顺序给出n个点,求它们组成的多边形的最大内切圆半径. 二分这个半径,将所有直线向多边形中心平移r距离,如果半平面交不存在那么r大了,否则r小了. 平移直线就是对于向量ab,因为是逆时针的,向中 ...

  9. 简单几何(半平面交+二分) LA 3890 Most Distant Point from the Sea

    题目传送门 题意:凸多边形的小岛在海里,问岛上的点到海最远的距离. 分析:训练指南P279,二分答案,然后整个多边形往内部收缩,如果半平面交非空,那么这些点构成半平面,存在满足的点. /******* ...

随机推荐

  1. XAML(4) - 标记扩展

    在为元素设置值时, 可以直接设置值, 但有时标记扩展非常有帮助.标记扩展包含花括号,其后是定义了标记扩展类型的字符串标志. 下面是一个Static Resource标记扩展: <Button N ...

  2. .net 内存分配及垃圾回收总结

        生存期垃圾回收器 目前有很多种类型的垃圾回收器.微软实现了一种生存期垃圾回收器(Generation Garbage Collector). 生存期垃圾回收器将内存分为很多托管堆,每一个托管堆 ...

  3. JS把函数当作参数传递

    getDescPage("commonPage","/page/common/tips/tips.html",init()); $("#"+ ...

  4. js-提前声明和new操作符理解

    1.提前声明:声明变量后,js会把声明部分提前到作用域前面. var a=1; function aheadOfStatement(){ alert(a); var a=2; } 这段代码结果是und ...

  5. Linux分区

    硬盘分区主要分为基本分区和扩展分区两种,基本分区和扩展分区的数目之和不能大于四个.且基本分区可以马上被使用但不能再分区.扩展分区必须再进行分区后才能进行使用,也就是说它必须进行二次分区.扩展分区再分下 ...

  6. Android--将图片存放到我们本地

    代码里面有详细的解释,我就不多说了 //处理并保存图像 private File dealPhoto(Bitmap photo){ FileOutputStream fileOutputStream ...

  7. OpenStack:安装Keystone

    >安装Keystone1. 安装# apt-get install keystone2. 创建dbcreate database keystone;grant all privileges on ...

  8. 常用gradle命令

    1.build.gradle ext { profile = "dev" tag='web' if (project.hasProperty('pro')) { temp = pr ...

  9. UISwitch swift

    // // ViewController.swift // UILabelTest // // Created by mac on 15/6/23. // Copyright (c) 2015年 fa ...

  10. OC学习笔记之属性详解和易错点

    属性的概念在OC1.0中就存在,格式是定义实例变量,然后定义setter和getter方法,用点操作符操作属性 举例,类的接口部分 @interface Father : NSObject { NSI ...