ICP(Iterative Closest Point迭代最近点)算法是一种点集对点集配准方法。在VTK、PCL、MRPT、MeshLab等C++库或软件中都有实现,可以参见维基百科中的ICP Algorithm Implementations.

  ICP算法采用最小二乘估计计算变换矩阵,原理简单且具有较好的精度,但是由于采用了迭代计算,导致算法计算速度较慢,而且采用ICP进行配准计算时,其对待配准点云的初始位置有一定要求,若所选初始位置不合理,则会导致算法陷入局部最优。PCL点云库已经实现了多种点云配准算法:

  IterativeClosestPoint类提供了标准ICP算法的实现(The transformation is estimated based on SVD),算法迭代结束条件有如下几个:

  1. 最大迭代次数:Number of iterations has reached the maximum user imposed number of iterations (via setMaximumIterations)
  2. 两次变化矩阵之间的差值:The epsilon (difference) between the previous transformation and the current estimated transformation is smaller than an user imposed value (via setTransformationEpsilon)
  3. 均方误差(MSE):The sum of Euclidean squared errors is smaller than a user defined threshold (via setEuclideanFitnessEpsilon)

  基本用法如下:

IterativeClosestPoint<PointXYZ, PointXYZ> icp;
// Set the input source and target
icp.setInputCloud (cloud_source);
icp.setInputTarget (cloud_target);
// Set the max correspondence distance to 5cm (e.g., correspondences with higher distances will be ignored)
icp.setMaxCorrespondenceDistance (0.05);
// Set the maximum number of iterations (criterion 1)
icp.setMaximumIterations ();
// Set the transformation epsilon (criterion 2)
icp.setTransformationEpsilon (1e-);
// Set the euclidean distance difference epsilon (criterion 3)
icp.setEuclideanFitnessEpsilon ();
// Perform the alignment
icp.align (cloud_source_registered);
// Obtain the transformation that aligned cloud_source to cloud_source_registered
Eigen::Matrix4f transformation = icp.getFinalTransformation ();

  下面是一个完整的例子:

#include <iostream>
#include <pcl/io/pcd_io.h>
#include <pcl/point_types.h>
#include <pcl/registration/icp.h> int main (int argc, char** argv)
{
//Creates two pcl::PointCloud<pcl::PointXYZ> boost shared pointers and initializes them
pcl::PointCloud<pcl::PointXYZ>::Ptr cloud_in (new pcl::PointCloud<pcl::PointXYZ>);
pcl::PointCloud<pcl::PointXYZ>::Ptr cloud_out (new pcl::PointCloud<pcl::PointXYZ>); // Fill in the CloudIn data
cloud_in->width = ;
cloud_in->height = ;
cloud_in->is_dense = false;
cloud_in->points.resize (cloud_in->width * cloud_in->height);
for (size_t i = ; i < cloud_in->points.size (); ++i)
{
cloud_in->points[i].x = * rand () / (RAND_MAX + 1.0f);
cloud_in->points[i].y = * rand () / (RAND_MAX + 1.0f);
cloud_in->points[i].z = * rand () / (RAND_MAX + 1.0f);
} *cloud_out = *cloud_in; //performs a simple rigid transform on the point cloud
for (size_t i = ; i < cloud_in->points.size (); ++i)
cloud_out->points[i].x = cloud_in->points[i].x + 1.5f; //creates an instance of an IterativeClosestPoint and gives it some useful information
pcl::IterativeClosestPoint<pcl::PointXYZ, pcl::PointXYZ> icp;
icp.setInputCloud(cloud_in);
icp.setInputTarget(cloud_out); //Creates a pcl::PointCloud<pcl::PointXYZ> to which the IterativeClosestPoint can save the resultant cloud after applying the algorithm
pcl::PointCloud<pcl::PointXYZ> Final; //Call the registration algorithm which estimates the transformation and returns the transformed source (input) as output.
icp.align(Final); //Return the state of convergence after the last align run.
//If the two PointClouds align correctly then icp.hasConverged() = 1 (true).
std::cout << "has converged: " << icp.hasConverged() <<std::endl; //Obtain the Euclidean fitness score (e.g., sum of squared distances from the source to the target)
std::cout << "score: " <<icp.getFitnessScore() << std::endl;
std::cout << "----------------------------------------------------------"<< std::endl; //Get the final transformation matrix estimated by the registration method.
std::cout << icp.getFinalTransformation() << std::endl; return ();
}

  结果如下,ICP算法计算出了正确的变换

  在PCL官方的tutorial中还有个ICP算法交互的例子(Interactive Iterative Closest Point,网站上该例子的源代码编译时有一点问题需要修改...),该程序中按一次空格ICP迭代计算一次。可以看出,随着迭代进行,两块点云逐渐重合在一起。

参考:

How to use iterative closest point

http://pointclouds.org/documentation/tutorials/iterative_closest_point.php#iterative-closest-point

Interactive Iterative Closest Point

http://pointclouds.org/documentation/tutorials/interactive_icp.php#interactive-icp

PCL之ICP算法实现

https://segmentfault.com/a/1190000005930422

PCL学习笔记二:Registration (ICP算法)

http://blog.csdn.net/u010696366/article/details/8941938

PCL点云库:ICP算法的更多相关文章

  1. PCL点云库中的坐标系(CoordinateSystem)

    博客转载自:https://blog.csdn.net/qq_33624918/article/details/80488590 引言 世上本没有坐标系,用的人多了,便定义了坐标系统用来定位.地理坐标 ...

  2. Windows下安装PCL点云库

    原文链接:http://blog.csdn.net/u012337034/article/details/38270109 简介:         在Windows下安装PCL点云库的方法大概有两种: ...

  3. Windows 8 64位系统 在VS2010 32位软件上 搭建 PCL点云库 开发环境

    Windows 8 64位系统 在VS2010 32位软件上 搭建 PCL点云库 开发环境 下载PCL For windows 软件包 到这个网站下载PCL-All-In-One Installer: ...

  4. PCL点云库(Point Cloud Library)简介

    博客转载自:http://www.pclcn.org/study/shownews.php?lang=cn&id=29 什么是PCL PCL(Point Cloud Library)是在吸收了 ...

  5. python利用pybind11调用PCL点云库

    2019年7月9日14:31:13 完成了一个简单的小例子,python生成点云数据,利用pybind11传给PCL显示. ubuntu 16.04 + Anaconda3  python3.6 + ...

  6. PCL点云库:对点云进行变换(Using a matrix to transform a point cloud)

    点云数据可以用ASCII码的形式存储在PCD文件中(关于该格式的描述可以参考链接:The PCD (Point Cloud Data) file format).为了生成三维点云数据,在excel中用 ...

  7. [PCL]1 PCL点云库安装

    1.安装文件下载:官网,我还是比较喜欢别人编译好的安装包啊,哈哈. http://www.pointclouds.org/downloads/windows.html 2.傻瓜式安装(下面的依赖项都集 ...

  8. PCL点云库增加自定义数据类型

    #include <pcl/filters/passthrough.h> #include <pcl/filters/impl/passthrough.hpp> // the ...

  9. 25 面向对象设计实例——基于PCL点云库的通用工具开发

    0 引言 问题背景:pcl中提供了大量工具,用于对点云和三角面片文件进行处理和显示.在研究中,存在很多简易的需求,比如点云坐标转换,点云的打开显示以及同步显示,点云的最小包络求解,点云的格式转换等等. ...

随机推荐

  1. HTML5,超级链接

    <a href="http://h123.date">预算控制系统</a><<br><a href="2.html&quo ...

  2. 【PyQuery】PyQuery总结

    pyquery库是jQuery的Python实现,可以用于解析HTML网页内容, 官方文档地址是:http://packages.python.org/pyquery/. 二.使用方法 ? 1 fro ...

  3. 如何设置DB2I(SPUFI)来正常工作

    首先确定你现在所使用的登录proc,确保有权限可以在对应的PDS内新建member,可以在s.st里面找userid对应的job,然后去serach using,基本可以找到对应的dataset 用t ...

  4. React+Node.js+Express+mongoskin+MongoDB

    首发:个人博客,更新&纠错&回复 采用React + Node.js + Express + mongoskin + MongoDB技术开发的一个示例,演示地址在这里,项目源码在这里. ...

  5. django中request对象详解(转载)

    django中的request对象详解 Request 我们知道当URLconf文件匹配到用户输入的路径后,会调用对应的view函数,并将  HttpRequest对象  作为第一个参数传入该函数. ...

  6. Install Sogou IM 2.0 in Ubuntu14.04+/Xfce

    Ubuntu14.04+ 安装搜狗输入法 搜狗输入法是一款非常友好的输入法产品,从Ubuntu14.04开始对Linux支持,不过只是Debian系的,是Ubuntu优麒麟组引入的.优麒麟是针对国人设 ...

  7. java中OutputStream字节流与字符流InputStreamReader 每一种基本IO流BufferedOutputStream,FileInputStream,FileOutputStream,BufferedInputStream,BufferedReader,BufferedWriter,FileInputStream,FileReader,FileWriter,InputStr

    BufferedOutputStream,FileInputStream,FileOutputStream,BufferedInputStream,BufferedReader,BufferedWri ...

  8. [转]centos中wget的使用方法

    本文转自 http://www.cnblogs.com/chusiping/archive/2011/11/10/2243805.html 和 http://www.jb51.net/os/RedHa ...

  9. IOS5基础教程之一-----如何创建XCode项目

    一.IOS的基础知识 1.只有一个应用程序正在运行.在IOS上,每一段时间内只能激活一个应用程序并在屏幕上显示. 2.只有一个窗口.只允许应用程序操作的一个窗口. 3.访问受限.只能在IOS为应用程序 ...

  10. 使用 Bootstrap Typeahead 组件

    Bootstrap 中的 Typeahead 组件就是通常所说的自动完成 AutoComplete,功能很强大,但是,使用上并不太方便.这里我们将介绍一下这个组件的使用. 第一,简单使用 首先,最简单 ...