O(n2)显然超时。网上找的题解都是用奇怪的姿势写看不懂TAT。然后自己YY。要求a[i]之前最大的是多少且最大的有多少个。那么线段树维护两个值,一个是当前区间的最大值一个是当前区间最大值的数量那么我们可以做到O(logn)查询最大值和更新。

不过树状数组一直不怎么会用。。。

#include<cstdio>
#include<cstring>
#include<cctype>
#include<algorithm>
using namespace std;
#define rep(i,s,t) for(int i=s;i<=t;i++)
#define dwn(i,s,t) for(int i=s;i>=t;i--)
#define clr(x,c) memset(x,c,sizeof(x))
#define lson l,mid,x<<1
#define rson mid+1,r,x<<1|1
int read(){
int x=0;char c=getchar();
while(!isdigit(c)) c=getchar();
while(isdigit(c)) x=x*10+c-'0',c=getchar();
return x;
}
const int nmax=5e4+5;
const int inf=0x7f7f7f7f;
const int mod=1e9+7;
int a[nmax],b[nmax],mx[nmax<<2],sm[nmax<<2];
int qmax(int tl,int tr,int l,int r,int x){
if(tl<=l&&tr>=r) return mx[x];
int mid=(l+r)>>1,ans=0;
if(tl<=mid) ans=max(ans,qmax(tl,tr,lson));
if(tr>mid) ans=max(ans,qmax(tl,tr,rson));
return ans;
}
int query(int tl,int tr,int p,int l,int r,int x){
if(tl<=l&&tr>=r) return mx[x]==p?sm[x]:0;
int mid=(l+r)>>1,ans=0;
if(tl<=mid) ans+=query(tl,tr,p,lson);
if(tr>mid) ans+=query(tl,tr,p,rson);
return ans>=mod?ans-mod:ans;
}
void update(int p,int a,int b,int l,int r,int x){
if(mx[x]<a) mx[x]=a,sm[x]=b;
else if(mx[x]==a) sm[x]=(sm[x]+b)%mod;
if(l==r) return ;
int mid=(l+r)>>1;
p<=mid?update(p,a,b,lson):update(p,a,b,rson);
}
void print(int l,int r,int x){
printf("%d %d:%d %d\n",l,r,mx[x],sm[x]);
if(l==r) return ;
int mid=(l+r)>>1;
print(lson);print(rson);
}
int main(){
int n=read();rep(i,1,n) a[i]=b[i]=read();
sort(b+1,b+n+1);int cnt=unique(b+1,b+n+1)-b-1;
rep(i,1,n) a[i]=lower_bound(b+1,b+cnt+1,a[i])-b;
int u,v,d;
rep(i,1,n){
u=a[i]==1?1:qmax(1,a[i]-1,1,cnt,1)+1;
v=u==1?1:query(1,a[i]-1,u-1,1,cnt,1);
update(a[i],u,v,1,cnt,1);
/*printf("->%d %d\n",u,v);
printf("->_->\n");print(1,cnt,1);*/
}
printf("%d\n",sm[1]);
return 0;
}

  

基准时间限制:1 秒 空间限制:131072 KB 分值: 160 难度:6级算法题
 收藏
 关注
数组A包含N个整数(可能包含相同的值)。设S为A的子序列且S中的元素是递增的,则S为A的递增子序列。如果S的长度是所有递增子序列中最长的,则称S为A的最长递增子序列(LIS)。A的LIS可能有很多个。例如A为:{1 3 2 0 4},1 3 4,1 2 4均为A的LIS。给出数组A,求A的LIS有多少个。由于数量很大,输出Mod 1000000007的结果即可。相同的数字在不同的位置,算作不同的,例如 {1 1 2} 答案为2。
Input
第1行:1个数N,表示数组的长度。(1 <= N <= 50000)
第2 - N + 1行:每行1个数A[i],表示数组的元素(0 <= A[i] <= 10^9)
Output
输出最长递增子序列的数量Mod 1000000007。
Input示例
5
1
3
2
0
4
Output示例
2

51nod1376 最长递增子序列的数量的更多相关文章

  1. 【51nod】1376 最长递增子序列的数量

    数组A包含N个整数(可能包含相同的值).设S为A的子序列且S中的元素是递增的,则S为A的递增子序列.如果S的长度是所有递增子序列中最长的,则称S为A的最长递增子序列(LIS).A的LIS可能有很多个. ...

  2. 51NOD 1376 最长递增子序列的数量 [CDQ分治]

    1376 最长递增子序列的数量 首先可以用线段树优化$DP$做,转移时取$0...a[i]$的最大$f$值 但我要练习$CDQ$ $LIS$是二维偏序问题,偏序关系是$i<j,\ a_i< ...

  3. 51nod 1376 最长递增子序列的数量(线段树)

    51nod 1376 最长递增子序列的数量 数组A包含N个整数(可能包含相同的值).设S为A的子序列且S中的元素是递增的,则S为A的递增子序列.如果S的长度是所有递增子序列中最长的,则称S为A的最长递 ...

  4. 51Nod 1376 最长递增子序列的数量 —— LIS、线段树

    题目链接:http://www.51nod.com/onlineJudge/questionCode.html#!problemId=1376 1376 最长递增子序列的数量 基准时间限制:1 秒 空 ...

  5. 51Nod 1376 最长递增子序列的数量 (DP+BIT)

    题意:略. 析:dp[i] 表示以第 i 个数结尾的LIS的长度和数量,状态方程很好转移,先说长度 dp[i] = max { dp[j] + 1 | a[i] > a[j] && ...

  6. 673. Number of Longest Increasing Subsequence最长递增子序列的数量

    [抄题]: Given an unsorted array of integers, find the number of longest increasing subsequence. Exampl ...

  7. 51nod1376 最长上升子序列的数量

    机房的人问我树状数组怎么做这题...... 树状数组维护$len, num$表示$LIS$的长度和数量即可 复杂度$O(n \log n)$ 注:$O(n \log n)$二分+单调栈才是真神仙 具体 ...

  8. 51nod 1376 最长递增子序列的数量(不是dp哦,线段树 +  思维)

    题目链接:https://www.51nod.com/onlineJudge/questionCode.html#!problemId=1376 题解:显然这题暴力的方法很容易想到就是以每个数为结尾最 ...

  9. 【动态规划】拦截导弹_dilworth定理_最长递增子序列

    问题 K: [动态规划]拦截导弹 时间限制: 1 Sec  内存限制: 256 MB提交: 39  解决: 10[提交][状态][讨论版] 题目描述 张琪曼:“老师,修罗场是什么?” 墨老师:“修罗是 ...

随机推荐

  1. javascript实现数据结构与算法系列:队列 -- 链队列和循环队列实现及示例

    1 队列的基本概念 队列(Queue):也是运算受限的线性表.是一种先进先出(First In First Out ,简称FIFO)的线性表.只允许在表的一端进行插入,而在另一端进行删除. 队首(fr ...

  2. unity android 集成指南

    原地址:http://blog.csdn.net/alking_sun/article/details/36175187 1.安卓层开发并暴露接口.   launcher activity(以下称为U ...

  3. java多线程基础知识

    1.ThrTest.java 继承Thread类方式 public class ThrTest extends Thread { private String name; public ThrTest ...

  4. virtualenv 环境下 Nginx + Flask + Gunicorn+ Supervisor 搭建 Python Web

    在这篇文章里,我们将搭建一个简单的 Web 应用,在虚拟环境中基于 Flask 框架,用 Gunicorn 做 wsgi 容器,用 Supervisor 管理进程,然后使用 Python 探针来监测应 ...

  5. [你必须知道的.NET]第三十一回,深入.NET 4.0之,从“新”展望

    发布日期:2009.05.22 作者:Anytao © 2009 Anytao.com ,Anytao原创作品,转贴请注明作者和出处. /// <summary> /// 本文开始,将以& ...

  6. [转载] poll()函数

    原地址:http://baike.baidu.com/view/2997591.htm   poll()函数:这个函数是某些Unix系统提供的用于执行与select()函数同等功能的函数,下面是这个函 ...

  7. IDTHook 深入学习

    在之前的一篇文章中介绍了替换IDT向量表中的地址来达到Hook的目的 IDT hook KiTrap03 但是这样很容易就可以被检测了.接下来要学习就是通过patch GDT来达到Hook IDT的目 ...

  8. 叠罗汉II

    叠罗汉是一个著名的游戏,游戏中一个人要站在另一个人的肩膀上.为了使叠成的罗汉更稳固,我们应该让上面的人比下面的人更轻一点.现在一个马戏团要表演这个节目,为了视觉效果,我们还要求下面的人的身高比上面的人 ...

  9. GDB下查看内存命令(x命令)

    http://blog.csdn.net/allenlinrui/article/details/5964046 可以使用examine命令(简写是x)来查看内存地址中的值.x命令的语法如下所示: x ...

  10. Haproxy安装及配置

    1.安装 # wget http://haproxy.1wt.eu/download/1.3/src/haproxy-1.3.20.tar.gz # tar zcvf haproxy-1.3.20.t ...