C#中汉诺塔问题的递归解法
百度测试部2015年10月份的面试题之——汉诺塔。
汉诺塔就是将一摞盘子从一个塔转移到另一个塔的游戏,中间有一个用来过度盘子的辅助塔。
百度百科在此。
游戏试玩在此。
用递归的思想解决汉诺塔问题就是分为两种情况:
第一种情况是只有一个盘子的情况,也就是最基本的情况,这种情况下,直接将该盘子从原始塔转移到目标塔即可胜利;
第二种情况是右n个盘子的情况,也就是普遍情况,这种情况下,要将除了最底下的那个盘子以外的(n-1)个盘子从原始塔转移到辅助塔,再把最底下的那个盘子(第n个盘子)从原始塔转移到目标塔,最后将辅助塔的(n-1)个盘子从辅助塔转移到目标塔。
而第二种情况中(n-1)个盘子的问题又可以拆分成(n-2)个盘子和一个盘子的问题——
而(n-2)个盘子的问题又可以拆分成(n-3个情况)和一个盘子的问题——
……
最终可以拆分成(n-(n-1))个盘子的问题,也就是一个盘子的问题,这时候问题就变成了第一种情况——
将这个盘子从原始塔转移到目标塔即可。
以上就是递归的思想在解汉诺塔游戏中的应用,我们可以理解这种递归法为类似数学归纳法的逆向思维法:
数学归纳法是一种从问题最基本情况的求解过程通过找规律从而得出该问题普遍情况的求解过程的方法;
递归法是将对问题普遍情况的求解过程进行拆分,最后分解为对一种最基本情况的求解过程的方法。
通过递归法解决汉诺塔的移动顺序问题代码如下:
using System; namespace HanoiTower
{
class Program
{
static void Main(string[] args)
{
int n = Int32.Parse(Console.ReadLine());
Hanoi(n,"TowerA","TowerB","TowerC");
Console.ReadLine();
} private static void Hanoi(int n, string origin, string temp, string destination)
{
if (n == )
{
move(origin, destination);
}
else
{
Hanoi(n - , origin, destination, temp);
move(origin, destination);
Hanoi(n - , temp, origin, destination);
}
} private static void move(string origin, string destination)
{
Console.WriteLine("Move the plate from " + origin + " to " + destination);
}
}
}
运行结果如下(以三个盘子的情况为例,大家可以去游戏中操作来验证解的正确性):
C#中汉诺塔问题的递归解法的更多相关文章
- [Python3 练习] 006 汉诺塔2 非递归解法
题目:汉诺塔 II 接上一篇 [Python3 练习] 005 汉诺塔1 递归解法 这次不使用递归 不限定层数 (1) 解决方式 利用"二进制" (2) 具体说明 统一起见 我把左 ...
- 汉诺塔算法的递归与非递归的C以及C++源代码
汉诺塔(又称河内塔)问题其实是印度的一个古老的传说. 开天辟地的神勃拉玛(和中国的盘古差不多的神吧)在一个庙里留下了三根金刚石的棒,第一根上面套着64个圆的金片,最大的一个在底下,其余一个比一 个小, ...
- python汉诺塔问题的递归理解
一.问题背景 汉诺塔问题是源于印度一个古老传说. 源于印度一个古老传说的益智玩具.大梵天创造世界的时候做了三根金刚石柱子,在一根柱子上从下往上按照大小顺序摞着64片黄金圆盘.大梵天命令婆罗门把圆盘从下 ...
- PTA 汉诺塔的非递归实现(C 语言)
借助堆栈以非递归(循环)方式求解汉诺塔的问题(n, a, b, c), 即将N个盘子从起始柱(标记为“a”)通过借助柱(标记为“b”)移动到目标柱(标记为“c”), 并保证每个移动符合汉诺塔问题的要求 ...
- [Python3 练习] 005 汉诺塔1 递归解法
题目:汉诺塔 I (1) 描述 传说,在世界中心贝拿勒斯(在印度北部)的圣庙外有左中右三根足够长的柱子(塔) 左边柱子上套着 64 片金片,金片按"上小下大"排,其余两根是空柱子 ...
- 汉诺塔算法c++源代码(递归与非递归)[转]
算法介绍: 其实算法非常简单,当盘子的个数为n时,移动的次数应等于2^n - 1(有兴趣的可以自己证明试试看).后来一位美国学者发现一种出人意料的简单方法,只要轮流进行两步操作就可以了.首先把三根柱 ...
- python数据结构_递归_汉诺塔问题
已经不是第一次写这个汉诺塔问题, 其实递归还真是不太好理解, 因为递归这种是想其实有点反人类, 为什么? 因为不太清楚, 写个循环一目了然, 用递归其实要把核心逻辑理清楚, 要不根本没法进行下去 所有 ...
- 用turtle库实现汉诺塔问题~~~~~
汉诺塔问题 问题描述和背景: 汉诺塔是学习"递归"的经典入门案例,该案例来源于真实故事. ...
- 汉诺塔问题C++实现
大家好,我是小鸭酱,博客地址为:http://www.cnblogs.com/xiaoyajiang 以下进行汉诺塔问题的递归实现 #include <iostream.h> int gb ...
随机推荐
- JavaScript中Date(日期对象),Math对象--学习笔记
Date对象 1.什么是Date对象? 日期对象可以储存任意一个日期,并且可以精确到毫秒数(1/1000 秒). 语法:var Udate=new Date(); 注:初始值为当前时间(当前电脑系统 ...
- sql case when 速记
Case具有两种格式.简单Case函数和Case搜索函数. --简单Case函数 CASE sex WHEN '1' THEN '男' WHEN '2' THEN '女' ELSE '其他' END ...
- 夺命雷公狗jquery---2层级选择器
<!DOCTYPE html> <html> <head> <meta charset="utf-8"> <title> ...
- 机器学习(Machine Learning)&深入学习(Deep Learning)资料
<Brief History of Machine Learning> 介绍:这是一篇介绍机器学习历史的文章,介绍很全面,从感知机.神经网络.决策树.SVM.Adaboost 到随机森林. ...
- andriod之应用内置浏览器 webview
参考:http://my.eoe.cn/694183/archive/10476.html http://blog.csdn.net/it_ladeng/article/details/8136534 ...
- SQLServer出现 '其他会话正在使用事务的上下文' 的问题原因,什么是环回链接服务器?(转载)
本人经过百度查找并且自己进行测试得到问题原因: MSDN上看了一下说是sql server 不支持在分布式事务处理中存在指向本地的链接服务器(环回链接服务器) 通过上面简单说明大家有可能没完全理解环回 ...
- iBatis面试题
1) Ibatis中使用like ‘%#filedName#%’ 时,有什么问题? 在xml映射文件中,如果直接按如上写法,会报异常:java.sql.SQLException: Invalid ar ...
- Ubuntu1404: 将VIM打造为一个实用的PythonIDE
参考: http://www.tuicool.com/articles/ZRv6Rv 说明: 内容非原创, 主要是做了整合和梳理. 在 ubuntu14.04 & debian 8 下测试通 ...
- mysql命令行操作
显示数据库 show databases;当前数据库 select database(); 显示表 show tables;更改表名称 alter table 原表名 rename ...
- 【python cookbook】【数据结构与算法】16.筛选序列中的元素
问题:提取出序列中的值或者根据某些标准对序列做删减 解决方案:列表推导式.生成器表达式.使用内建的filter()函数 1.列表推导式方法:存在一个潜在的缺点,如果输入数据非常大可能会产生一个庞大的结 ...