Longest Common Subsequence (LCS)
最长公共子序列(LCS)是经典的DP问题,求序列a[1...n], b[1..m]的LCS。
状态是DP[i][j],表示a[1..i],b[1..j]的LCS。
DP转移方程是
DP[i][j]=
DP[i-1][j-1]+1, a[i] == b[j]
max{ DP[i][j-1], DP[i-1][j] }, a[i] != b[i]
-------------------------------------------------------------------------------------------
时间复杂度O(N^2),空间复杂度0(N^2)。
使用滚动数组,可将空间复杂度降到 0(N)。
观察DP转移方程可看出,即使用滚动数组,也需要两个即DP[2][N],一个DP[N]行不通。
因为若只用一维数组DP[N]来保存状态,第一个式子要求从右向左更新,第二个式子要求从左向右更新。
------------------------------------------------------------------------------------
以上关于用滚动数组降低空间复杂度的论述有误
----------------------------------------------------------------
实际上只用一维数组DP[N]也可以。严格地说,上面的论述并没有错,若严格按照
DP[i][j]=
DP[i-1][j-1]+1, a[i] == b[j]
max{ DP[i][j-1], DP[i-1][j] }, a[i] != b[i]
来转移,一个DP[N]确实不够,但我们深入分析下一开始的论据--"第一个式子要求从右向左更新",
如果第一式也从左向右更新,那么在需要DP[i-1][j-1]时,它已被DP[i][j-1]覆盖。
自然地,我们考虑把DP[i-1][j-1]单独存起来,问题就解决了。
---------------------------------------------------------------------------------------------------------------------------------------
还有一种思路,我们略微变通一下,将第一个转移方程改为
DP[i][j] = max{ DP[i-1][k] : k < j } +1
这样只要在从左到右更新时维护一个max{ DP[i-1][k] : k < j }。
而DP[i-1][k] >= DP[i-1][k-1] (k >=1),所以实际上只要在计算DP[i][j]之前,把DP[i-1][j]存起来以备查询。
-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
伪代码
FOR i := 0 to n
dp[i] := 0
END FOR
FOR i := 1 to n
tmp := dp[0]
FOR j := 1 to m
IF a[i] = b[j]
IF tmp = dp[j]
dp[j] := tmp + 1
ELSE
tmp := dp[j]
END IF
ELSE
tmp := dp[j]
dp[j] := max{dp[j], dp[j-1]}
END IF
END FOR
END FOR
Longest Common Subsequence (LCS)的更多相关文章
- 动态规划求最长公共子序列(Longest Common Subsequence, LCS)
1. 问题描述 子串应该比较好理解,至于什么是子序列,这里给出一个例子:有两个母串 cnblogs belong 比如序列bo, bg, lg在母串cnblogs与belong中都出现过并且出现顺序与 ...
- 最长公共字串算法, 文本比较算法, longest common subsequence(LCS) algorithm
''' merge two configure files, basic file is aFile insert the added content of bFile compare to aFil ...
- 动态规划 ---- 最长公共子序列(Longest Common Subsequence, LCS)
分析: 完整代码: // 最长公共子序列 #include <stdio.h> #include <algorithm> using namespace std; ; char ...
- LintCode Longest Common Subsequence
原题链接在这里:http://www.lintcode.com/en/problem/longest-common-subsequence/ 题目: Given two strings, find t ...
- Longest Common Subsequence
Given two strings, find the longest common subsequence (LCS). Your code should return the length of ...
- Longest Common Subsequence & Substring & prefix
Given two strings, find the longest common subsequence (LCS). Your code should return the length of ...
- Lintcode:Longest Common Subsequence 解题报告
Longest Common Subsequence 原题链接:http://lintcode.com/zh-cn/problem/longest-common-subsequence/ Given ...
- [Algorithms] Longest Common Subsequence
The Longest Common Subsequence (LCS) problem is as follows: Given two sequences s and t, find the le ...
- 【Lintcode】077.Longest Common Subsequence
题目: Given two strings, find the longest common subsequence (LCS). Your code should return the length ...
随机推荐
- Linq中查询List组合相同值数量大于1
List< select g.Key).ToList();
- css3d
立方体:http://sandbox.runjs.cn/show/1h6zvghj 原理分析:(左负右正) x:与屏幕水平:(在屏幕上) y:与屏幕水平方向垂直(在屏幕上) z:垂直于屏幕(在屏幕外) ...
- 理解SQL Server中的权限体系(上)----主体
原文:http://www.cnblogs.com/CareySon/archive/2012/04/10/mssql-security-principal.html 简介 权限两个字,一个权力,一个 ...
- 区块链技术(一):Truffle开发入门
以太坊是区块链开发领域最好的编程平台,而truffle是以太坊(Ethereum)最受欢迎的一个开发框架,这是我们第一篇区块链技术文章介绍truffle的原因,实战是最重要的事情,这篇文章不讲原理,只 ...
- js 中常用的方法
1..call() 将.call()点之前的属性或方法,继承给括号中的对象. 2.(function(){xxx})() 解释:包围函数(function(){})的第一对括号向脚本返回未命名的函数, ...
- ASP.net MVC自定义错误处理页面的方法
在ASP.NET MVC中,我们可以使用HandleErrorAttribute特性来具体指定如何处理Action抛出的异常.只要某个Action设置了HandleErrorAttribute特性,那 ...
- python 控制 cmd 命令行颜色
基于win7 + python3.4 import ctypes import sys '''Windows CMD命令行颜色''' # 句柄号 STD_INPUT_HANDLE = -10 STD_ ...
- html 元素 绝对位置坐标
$(".seriesListings-itemContainer").click(function(){$(this).css("border","1 ...
- error C2065: “CMainFrame”: 未声明的标识符
xxxView.cp的开头包含 框架的头文件即可 : #include "MainFrm.h"
- 《android基于andFix的热修复方案》思路篇
1:需求背景 项目上线之后,发现BUG需要修复(比如安卓兼容性等测试难以发现的问题),频繁的更新影响用户体验 2:方案要求 静默下载,耗费流量少,打完补丁后立刻生效,不用重启apk 3:解决思路 3. ...