题目大意:x xor 2x=3x(与x xor 3x=2x等价)求满足等式且小于n的x的个数,与满足等式小于2n的数的个数。

因为异或是不进位的二进制加法,那么因为结果正好和加法相同,那么说明x在二进制上没有相邻的1。那么简单的数位DP就可以求出满足这个的答案了。

再看subtask2,根据打表找规律可得,这就是斐波那契数列的第n+2项(以首项是0来说)。那么只需要O(23⋅lgn)的矩阵乘法就可以了。

代码:

#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
#define LL long long unsigned
const LL MOD = 1e9+7;
LL dp[100][2], L, R, cnt;
int n, a[100];
LL DP(int i, int j, int f) {
if(!i) return 1;
if(!f && ~dp[i][j]) return dp[i][j];
LL ans = 0;
int ed = f ? a[i] : 1;
for(int k = 0; k <= ed; ++ k) if(!k||!j) ans += DP(i-1, k, f && k == ed);
if(!f) dp[i][j] = ans;
return ans;
}
LL solve(LL s, int len = 0) {
for(; s; s >>= 1) a[++ len] = s & 1;
return DP(len, 0, 1);
}
struct Mat { LL a[3][3]; } A, B;
Mat Mul(Mat A, Mat B) {
Mat C;
for(int i = 0; i < 2; ++ i)
for(int j = 0; j < 2; ++ j)
C.a[i][j] = 0;
for(int i = 0; i < 2; ++ i)
for(int j = 0; j < 2; ++ j)
for(int k = 0; k < 2; ++ k)
C.a[i][j] = (C.a[i][j] + A.a[i][k] * B.a[k][j]) % MOD;
return C;
}
Mat ksm(Mat A, LL k) {
Mat C;
for(int i = 0; i < 2; ++ i)
for(int j = 0; j < 2; ++ j)
C.a[i][j] = (i == j);
for(; k; k >>= 1) {
if(k & 1) C = Mul(C, A);
A = Mul(A, A);
}
return C;
}
int main() {
memset(dp, -1, sizeof dp);
int T; scanf("%d", &T);
while(T --) {
scanf("%llu", &R);
A.a[0][0] = A.a[0][1] = A.a[1][0] = 1;
A.a[1][1] = 0;
B.a[0][1] = 0; B.a[0][0] = 1;
A = ksm(A, R+1); A = Mul(A, B);
printf("%llu\n%llu\n", solve(R)-1, A.a[0][0]);
}
}

BZOJ3329 Xorequ(数位DP)的更多相关文章

  1. BZOJ3329 Xorequ[数位DP+递推矩阵快速幂]

    数    位    D    P    开    long    long 首先第一问是转化. 于是就可以二进制下DP了. 第二问是递推,假设最后$n-1$个01位的填法设为$f[i-1]$(方案包括 ...

  2. 【bzoj3329】Xorequ 数位dp+矩阵乘法

    题目描述 输入 第一行一个正整数,表示数据组数据 ,接下来T行每行一个正整数N 输出 2*T行第2*i-1行表示第i个数据中问题一的解, 第2*i行表示第i个数据中问题二的解, 样例输入 1 1 样例 ...

  3. BZOJ 3329: Xorequ [数位DP 矩阵乘法]

    3329: Xorequ 题意:\(\le n \le 10^18\)和\(\le 2^n\)中满足\(x\oplus 3x = 2x\)的解的个数,第二问模1e9+7 \(x\oplus 2x = ...

  4. BZOJ.3329.Xorequ(数位DP)

    题目链接 x^3x=2x -> x^2x=3x 因为a^b+((a&b)<<1)=a+b,x^2x=x+2x,所以x和2x的二进制表示中不存在相邻的1. (或者,因为x+2x ...

  5. BZOJ 3329 - Xorequ - 数位DP, 矩乘

    Solution 发现 $x \ xor \  2x = 3x$ 仅当 $x$ 的二进制中没有相邻的 $1$ 对于第一个问题就可以进行数位DP 了. 但是对于第二个问题, 我们只能通过递推 打表 来算 ...

  6. BZOJ 3329 Xorequ (数位DP、矩阵乘法)

    手动博客搬家: 本文发表于20181105 23:18:54, 原地址https://blog.csdn.net/suncongbo/article/details/83758728 题目链接 htt ...

  7. BZOJ 3329: Xorequ(数位dp+递推)

    传送门 解题思路 可以把原式移项得\(x\)^\(2x\)=\(3x\),而\(x+2x=3x\),说明\(x\)二进制下不能有两个连续的\(1\).那么第一问就是一个简单的数位\(dp\),第二问考 ...

  8. BZOJ3329 Xorequ(数位dp+矩阵快速幂)

    显然当x中没有相邻的1时该式成立,看起来这也是必要的. 于是对于第一问,数位dp即可.第二问写出dp式子后发现就是斐波拉契数列,矩阵快速幂即可. #include<iostream> #i ...

  9. BZOJ3329: Xorequ(二进制数位dp 矩阵快速幂)

    题意 题目链接 Sol 挺套路的一道题 首先把式子移一下项 \(x \oplus 2x = 3x\) 有一件显然的事情:\(a \oplus b \leqslant c\) 又因为\(a \oplus ...

随机推荐

  1. Centos中的Docker 配置:将loop-lvm改为derict-lvm

    重新装了个虚拟机,回顾一下最近三天的工作: Centos 查看版本 cat /etc/redhat-release yum -y upgrade 升级所有包,不改变软件设置和系统设置,系统版本升级,内 ...

  2. wget cooikes 下载

    2.下来用wget带cookie的命令下载,命令如下: wget -c –load-cookies=cookies.txt  ”下载地址” -O “文件名” &       [文件名处自己命名 ...

  3. iptables-qos-tcpcopy-tc-tcpdump

    QOS: https://www.chiphell.com/thread-427876-1-1.html iptables指南: http://man.chinaunix.net/network/ip ...

  4. mvc多个按钮的提交方法

    转载地址:http://www.cnblogs.com/wuchang/archive/2010/01/29/1658916.html 有时候会遇到这种情况:在一个表单上需要多个按钮来完成不同的功能, ...

  5. 码农谷 找出N之内的所有完数

    题目描述 一个数如果恰好等于它的因子之和,这个数就称为"完数". 例如,6的因子为1.2.3,而6=1+2+3,因此6是"完数". 编程序找出N之内的所有完数, ...

  6. 网络存储技术介绍(1) ( based on zt)

    最近由于某同学微信发了一些网络存储的文章,开始感兴趣,稍微收集了一些 一.  网络存储技术 http://ask.zol.com.cn/q/187044.html  (yxr:很老的技术介绍吧) 网络 ...

  7. 【229】Raster Calculator - 栅格计算器

    参考:分段函数进行复制,利用语句 参考:ArcGIS栅格计算器 - CSDN 参考:ArcGIS栅格计算器con条件函数使用 参考:ArcGIS栅格计算器 - 电脑玩物 ("lyr" ...

  8. eclipse 使用

  9. 在Linux下使用RAID--使用mdadm工具创建软件Raid 0(1)

    在Linux下使用RAID--使用mdadm工具创建软件Raid 0(1) RAID即廉价磁盘冗余阵列,其高可用性和可靠性适用于大规模环境中,相比正常使用,数据更需要被保护.RAID是一些磁盘的集合, ...

  10. JSF 抽象和实现例子 (函数和属性)

    ui:composition xmlns="http://www.w3.org/1999/xhtml" xmlns:f="http://java.sun.com/jsf/ ...