题目大意:x xor 2x=3x(与x xor 3x=2x等价)求满足等式且小于n的x的个数,与满足等式小于2n的数的个数。

因为异或是不进位的二进制加法,那么因为结果正好和加法相同,那么说明x在二进制上没有相邻的1。那么简单的数位DP就可以求出满足这个的答案了。

再看subtask2,根据打表找规律可得,这就是斐波那契数列的第n+2项(以首项是0来说)。那么只需要O(23⋅lgn)的矩阵乘法就可以了。

代码:

#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
#define LL long long unsigned
const LL MOD = 1e9+7;
LL dp[100][2], L, R, cnt;
int n, a[100];
LL DP(int i, int j, int f) {
if(!i) return 1;
if(!f && ~dp[i][j]) return dp[i][j];
LL ans = 0;
int ed = f ? a[i] : 1;
for(int k = 0; k <= ed; ++ k) if(!k||!j) ans += DP(i-1, k, f && k == ed);
if(!f) dp[i][j] = ans;
return ans;
}
LL solve(LL s, int len = 0) {
for(; s; s >>= 1) a[++ len] = s & 1;
return DP(len, 0, 1);
}
struct Mat { LL a[3][3]; } A, B;
Mat Mul(Mat A, Mat B) {
Mat C;
for(int i = 0; i < 2; ++ i)
for(int j = 0; j < 2; ++ j)
C.a[i][j] = 0;
for(int i = 0; i < 2; ++ i)
for(int j = 0; j < 2; ++ j)
for(int k = 0; k < 2; ++ k)
C.a[i][j] = (C.a[i][j] + A.a[i][k] * B.a[k][j]) % MOD;
return C;
}
Mat ksm(Mat A, LL k) {
Mat C;
for(int i = 0; i < 2; ++ i)
for(int j = 0; j < 2; ++ j)
C.a[i][j] = (i == j);
for(; k; k >>= 1) {
if(k & 1) C = Mul(C, A);
A = Mul(A, A);
}
return C;
}
int main() {
memset(dp, -1, sizeof dp);
int T; scanf("%d", &T);
while(T --) {
scanf("%llu", &R);
A.a[0][0] = A.a[0][1] = A.a[1][0] = 1;
A.a[1][1] = 0;
B.a[0][1] = 0; B.a[0][0] = 1;
A = ksm(A, R+1); A = Mul(A, B);
printf("%llu\n%llu\n", solve(R)-1, A.a[0][0]);
}
}

BZOJ3329 Xorequ(数位DP)的更多相关文章

  1. BZOJ3329 Xorequ[数位DP+递推矩阵快速幂]

    数    位    D    P    开    long    long 首先第一问是转化. 于是就可以二进制下DP了. 第二问是递推,假设最后$n-1$个01位的填法设为$f[i-1]$(方案包括 ...

  2. 【bzoj3329】Xorequ 数位dp+矩阵乘法

    题目描述 输入 第一行一个正整数,表示数据组数据 ,接下来T行每行一个正整数N 输出 2*T行第2*i-1行表示第i个数据中问题一的解, 第2*i行表示第i个数据中问题二的解, 样例输入 1 1 样例 ...

  3. BZOJ 3329: Xorequ [数位DP 矩阵乘法]

    3329: Xorequ 题意:\(\le n \le 10^18\)和\(\le 2^n\)中满足\(x\oplus 3x = 2x\)的解的个数,第二问模1e9+7 \(x\oplus 2x = ...

  4. BZOJ.3329.Xorequ(数位DP)

    题目链接 x^3x=2x -> x^2x=3x 因为a^b+((a&b)<<1)=a+b,x^2x=x+2x,所以x和2x的二进制表示中不存在相邻的1. (或者,因为x+2x ...

  5. BZOJ 3329 - Xorequ - 数位DP, 矩乘

    Solution 发现 $x \ xor \  2x = 3x$ 仅当 $x$ 的二进制中没有相邻的 $1$ 对于第一个问题就可以进行数位DP 了. 但是对于第二个问题, 我们只能通过递推 打表 来算 ...

  6. BZOJ 3329 Xorequ (数位DP、矩阵乘法)

    手动博客搬家: 本文发表于20181105 23:18:54, 原地址https://blog.csdn.net/suncongbo/article/details/83758728 题目链接 htt ...

  7. BZOJ 3329: Xorequ(数位dp+递推)

    传送门 解题思路 可以把原式移项得\(x\)^\(2x\)=\(3x\),而\(x+2x=3x\),说明\(x\)二进制下不能有两个连续的\(1\).那么第一问就是一个简单的数位\(dp\),第二问考 ...

  8. BZOJ3329 Xorequ(数位dp+矩阵快速幂)

    显然当x中没有相邻的1时该式成立,看起来这也是必要的. 于是对于第一问,数位dp即可.第二问写出dp式子后发现就是斐波拉契数列,矩阵快速幂即可. #include<iostream> #i ...

  9. BZOJ3329: Xorequ(二进制数位dp 矩阵快速幂)

    题意 题目链接 Sol 挺套路的一道题 首先把式子移一下项 \(x \oplus 2x = 3x\) 有一件显然的事情:\(a \oplus b \leqslant c\) 又因为\(a \oplus ...

随机推荐

  1. Clustering with the ArcGIS API for Flex

    Clustering is an excellent technique for visualizing lotss of point data. We've all seen application ...

  2. TableView使用CATransform3D特效动画

    效果一: 在代理方法中实现: - (void)tableView:(UITableView *)tableView willDisplayCell:(UITableViewCell *)cell fo ...

  3. Linux学习笔记——使用指定的用户权限执行程序——sudo

          sudo可以用来以其他用户身份执行命令,sudo命令可以针对单个命令授予临时权限.sudo仅在需要时授予用户权限,减少了用户因为错误执行命令损坏系统的可能性. 1:sudo的帮助信息如下: ...

  4. 32、shiro 框架入门三

    1.AuthenticationStrategy实现 //在所有Realm验证之前调用 AuthenticationInfo beforeAllAttempts( Collection<? ex ...

  5. Redmine2.5+CentOS6+Apache2

    redmine是使用ruby开发的一款无任何商业限制且可自行部署的项目管理软件,其简洁的界面比较符合程序猿的定位,使用起来比较方便,由于我之前装3X没 成功,各版本之间的依存和配置都不一样,所以最后参 ...

  6. SHELL脚本攻略(学习笔记)--2.4 find

    转载请注明出处:http://www.cnblogs.com/f-ck-need-u/p/5916657.html   超级强大的find命令. find搜索是从磁盘搜索,而不是从数据库搜索. 2.4 ...

  7. ngx.lua中遇到的小问题

    作者: 胡 志伟 分类: ngx_lua, 开发代码 发布时间: 2013-09-26 08:40 ė 6评论关闭 在使用ngx.redirect 到一个新的地址时,错误日志提示: lua entry ...

  8. EAS linux挂载数据盘

    查看数据盘名称 fdisk -l 假设没有挂载的数据盘为/dev/xvdb 格式化数据盘 mkfs.ext3 /dev/xvdb 添加自动挂载 mkdir /data echo '/dev/xvdb ...

  9. win 7安装 linux

    http://blog.csdn.net/wuwenxiang91322/article/details/23528619

  10. Ubuntu14.04环境下Samba报错排错过程

    排错的方法和思路非常重要,日志非常非常非常非常重要!!! 搭建好Samba之后,windos访问一直下面这个错误,然后傻逼一样一直百度百度,一弄又是几天,但是经过自己一步一步的排错,弄成功之后,那心情 ...