思路是hdu6134的简化版,只需要在外面套上一个枚举素数就行了。

http://www.cnblogs.com/autsky-jadek/p/7491730.html

#include<cstdio>
using namespace std;
#define N 10000000
bool notpri[N+5];
int pri[N+5],mu[N+5],sum[N+5];
typedef long long ll;
void shai_mu()
{
notpri[1]=1; mu[1]=1;
for(int i=2;i<=N;i++){
if(!notpri[i]){
pri[++pri[0]]=i;
mu[i]=-1;
}
for(int j=1;j<=pri[0];j++){
if((ll)i*(ll)pri[j]>(ll)N){
break;
}
notpri[i*pri[j]]=1;
mu[i*pri[j]]=-mu[i];
if(i%pri[j]==0){
mu[i*pri[j]]=0;
break;
}
}
}
sum[1]=mu[1];
for(int i=2;i<=N;i++){
sum[i]=sum[i-1]+mu[i];
}
}
int n;
int main(){
shai_mu();
scanf("%d",&n);
ll ans=0;
for(int i=2;i<=n;++i){
if(!notpri[i]){
int nn=n/i;
for(int j=1;j<=n/i;){
ans+=(ll)(sum[nn/(nn/j)]-sum[j-1])*(ll)(nn/j)*(ll)(nn/j);
j=nn/(nn/j)+1;
}
}
}
printf("%lld\n",ans);
return 0;
}

【数论】【枚举】【莫比乌斯反演】【线性筛】bzoj2818 Gcd的更多相关文章

  1. 【bzoj4407】于神之怒加强版 莫比乌斯反演+线性筛

    题目描述 给下N,M,K.求 输入 输入有多组数据,输入数据的第一行两个正整数T,K,代表有T组数据,K的意义如上所示,下面第二行到第T+1行,每行为两个正整数N,M,其意义如上式所示. 输出 如题 ...

  2. 【bzoj2694】Lcm 莫比乌斯反演+线性筛

    题目描述 求$\sum\limits_{i=1}^n\sum\limits_{j=1}^m|\mu(gcd(i,j))|lcm(i,j)$,即$gcd(i,j)$不存在平方因子的$lcm(i,j)$之 ...

  3. 【bzoj2693】jzptab 莫比乌斯反演+线性筛

    题目描述 输入 一个正整数T表示数据组数 接下来T行 每行两个正整数 表示N.M 输出 T行 每行一个整数 表示第i组数据的结果 样例输入 1 4 5 样例输出 122 题解 莫比乌斯反演+线性筛 由 ...

  4. Luogu2257 YY的GCD/BZOJ2818 Gcd加强版(莫比乌斯反演+线性筛)

    一通套路之后得到 求出中间那个函数的前缀和的话就可以整除分块了. 暴力求的话复杂度其实很优秀了,大约在n~nlogn之间. 不过可以线性筛做到严格线性.考虑其最小质因子,如果是平方因子那么只有其有贡献 ...

  5. bzoj 2820 YY的GCD - 莫比乌斯反演 - 线性筛

    Description 神犇YY虐完数论后给傻×kAc出了一题给定N, M,求1<=x<=N, 1<=y<=M且gcd(x, y)为质数的(x, y)有多少对kAc这种 傻×必 ...

  6. 莫比乌斯反演/线性筛/积性函数/杜教筛/min25筛 学习笔记

    最近重新系统地学了下这几个知识点,以前没发现他们的联系,这次总结一下. 莫比乌斯反演入门:https://blog.csdn.net/litble/article/details/72804050 线 ...

  7. 【bzoj3309】DZY Loves Math 莫比乌斯反演+线性筛

    Description 对于正整数n,定义f(n)为n所含质因子的最大幂指数.例如f(1960)=f(2^3 * 5^1 * 7^2)=3, f(10007)=1, f(1)=0. 给定正整数a,b, ...

  8. 【BZOJ-4407】于神之怒加强版 莫比乌斯反演 + 线性筛

    4407: 于神之怒加强版 Time Limit: 80 Sec  Memory Limit: 512 MBSubmit: 241  Solved: 119[Submit][Status][Discu ...

  9. Luogu 4917 天守阁的地板(莫比乌斯反演+线性筛)

    既然已经学傻了,这个题当然是上反演辣. 对于求积的式子,考虑把[gcd=1]放到指数上.一通套路后可以得到∏D∏d∏i∏j (ijd2)μ(d) (D=1~n,d|D,i,j=1~n/D). 冷静分析 ...

  10. bzoj 4407: 于神之怒加强版【莫比乌斯反演+线性筛】

    看着就像反演,所以先推式子(默认n<m): \[ \sum_{d=1}^{n}d^k\sum_{i=1}^n\sum_{j=1}^m[gcd(i,j)==d] \] \[ =\sum_{d=1} ...

随机推荐

  1. python dlib 面部轮廓实时检测

    1.dlib 实现动态人脸检测及面部轮廓检测 模型下载连接 : http://dlib.net/files/ # coding:utf-8 import cv2 import os import dl ...

  2. ubuntu 玩转 nodejs

    安装nginx 首先添加nginx_signing.key(必须,否则出错) $ wget http://nginx.org/keys/nginx_signing.key $ sudo apt-key ...

  3. error 0152: No Entity Framework provider found for the ADO.NET provider with invariant name 'System.Data.SqlClient'

    error 0152: No Entity Framework provider found for the ADO.NET provider with invariant name 'System. ...

  4. 我的spring boot,杨帆、起航!

    快速新建一个spring boot工程可以去http://start.spring.io/这个网址,配置完后会自动下载一个工程的压缩包,解压后导入相关ide工具即可使用. 工程中会自带一个class启 ...

  5. LINUX中断学习笔记【转】

    转自:http://blog.chinaunix.net/uid-14825809-id-2381330.html 1.中断的注册与释放: 在 , 实现中断注册接口: int request_irq( ...

  6. GCC在C语言中内嵌汇编 asm __volatile__ 【转】

    转自:http://blog.csdn.net/pbymw8iwm/article/details/8227839 在内嵌汇编中,可以将C语言表达式指定为汇编指令的操作数,而且不用去管如何将C语言表达 ...

  7. linux===linux后台运行和关闭、查看后台任务(转)

    fg.bg.jobs.&.ctrl + z都是跟系统任务有关的,虽然现在基本上不怎么需要用到这些命令,但学会了也是很实用的 一.& 最经常被用到这个用在一个命令的最后,可以把这个命令放 ...

  8. c#中char、string转换为十六进制byte的浅析

    问题引出: string转换为byte(十六进制) static void Main(string[] args) { "; byte[] b = Encoding.Default.GetB ...

  9. MyBatis 模糊查询 防止Sql注入

    #{xxx},使用的是PreparedStatement,会有类型转换,所以比较安全: ${xxx},使用字符串拼接,可以SQL注入: like查询不小心会有漏洞,正确写法如下:   Mysql:   ...

  10. Oracle简述

    Oracle是甲骨文公司推出的一款大型数据库管理系统.甲骨文公司成立于1977年,总部位于美国加利福尼亚州的红木滩.1989年,Oracle正式进入中国市场:2013年,甲骨文超越 IBM ,成为继 ...