思路是hdu6134的简化版,只需要在外面套上一个枚举素数就行了。

http://www.cnblogs.com/autsky-jadek/p/7491730.html

#include<cstdio>
using namespace std;
#define N 10000000
bool notpri[N+5];
int pri[N+5],mu[N+5],sum[N+5];
typedef long long ll;
void shai_mu()
{
notpri[1]=1; mu[1]=1;
for(int i=2;i<=N;i++){
if(!notpri[i]){
pri[++pri[0]]=i;
mu[i]=-1;
}
for(int j=1;j<=pri[0];j++){
if((ll)i*(ll)pri[j]>(ll)N){
break;
}
notpri[i*pri[j]]=1;
mu[i*pri[j]]=-mu[i];
if(i%pri[j]==0){
mu[i*pri[j]]=0;
break;
}
}
}
sum[1]=mu[1];
for(int i=2;i<=N;i++){
sum[i]=sum[i-1]+mu[i];
}
}
int n;
int main(){
shai_mu();
scanf("%d",&n);
ll ans=0;
for(int i=2;i<=n;++i){
if(!notpri[i]){
int nn=n/i;
for(int j=1;j<=n/i;){
ans+=(ll)(sum[nn/(nn/j)]-sum[j-1])*(ll)(nn/j)*(ll)(nn/j);
j=nn/(nn/j)+1;
}
}
}
printf("%lld\n",ans);
return 0;
}

【数论】【枚举】【莫比乌斯反演】【线性筛】bzoj2818 Gcd的更多相关文章

  1. 【bzoj4407】于神之怒加强版 莫比乌斯反演+线性筛

    题目描述 给下N,M,K.求 输入 输入有多组数据,输入数据的第一行两个正整数T,K,代表有T组数据,K的意义如上所示,下面第二行到第T+1行,每行为两个正整数N,M,其意义如上式所示. 输出 如题 ...

  2. 【bzoj2694】Lcm 莫比乌斯反演+线性筛

    题目描述 求$\sum\limits_{i=1}^n\sum\limits_{j=1}^m|\mu(gcd(i,j))|lcm(i,j)$,即$gcd(i,j)$不存在平方因子的$lcm(i,j)$之 ...

  3. 【bzoj2693】jzptab 莫比乌斯反演+线性筛

    题目描述 输入 一个正整数T表示数据组数 接下来T行 每行两个正整数 表示N.M 输出 T行 每行一个整数 表示第i组数据的结果 样例输入 1 4 5 样例输出 122 题解 莫比乌斯反演+线性筛 由 ...

  4. Luogu2257 YY的GCD/BZOJ2818 Gcd加强版(莫比乌斯反演+线性筛)

    一通套路之后得到 求出中间那个函数的前缀和的话就可以整除分块了. 暴力求的话复杂度其实很优秀了,大约在n~nlogn之间. 不过可以线性筛做到严格线性.考虑其最小质因子,如果是平方因子那么只有其有贡献 ...

  5. bzoj 2820 YY的GCD - 莫比乌斯反演 - 线性筛

    Description 神犇YY虐完数论后给傻×kAc出了一题给定N, M,求1<=x<=N, 1<=y<=M且gcd(x, y)为质数的(x, y)有多少对kAc这种 傻×必 ...

  6. 莫比乌斯反演/线性筛/积性函数/杜教筛/min25筛 学习笔记

    最近重新系统地学了下这几个知识点,以前没发现他们的联系,这次总结一下. 莫比乌斯反演入门:https://blog.csdn.net/litble/article/details/72804050 线 ...

  7. 【bzoj3309】DZY Loves Math 莫比乌斯反演+线性筛

    Description 对于正整数n,定义f(n)为n所含质因子的最大幂指数.例如f(1960)=f(2^3 * 5^1 * 7^2)=3, f(10007)=1, f(1)=0. 给定正整数a,b, ...

  8. 【BZOJ-4407】于神之怒加强版 莫比乌斯反演 + 线性筛

    4407: 于神之怒加强版 Time Limit: 80 Sec  Memory Limit: 512 MBSubmit: 241  Solved: 119[Submit][Status][Discu ...

  9. Luogu 4917 天守阁的地板(莫比乌斯反演+线性筛)

    既然已经学傻了,这个题当然是上反演辣. 对于求积的式子,考虑把[gcd=1]放到指数上.一通套路后可以得到∏D∏d∏i∏j (ijd2)μ(d) (D=1~n,d|D,i,j=1~n/D). 冷静分析 ...

  10. bzoj 4407: 于神之怒加强版【莫比乌斯反演+线性筛】

    看着就像反演,所以先推式子(默认n<m): \[ \sum_{d=1}^{n}d^k\sum_{i=1}^n\sum_{j=1}^m[gcd(i,j)==d] \] \[ =\sum_{d=1} ...

随机推荐

  1. [bzoj4569][SCOI2016]萌萌哒-并查集+倍增

    Brief Description 一个长度为n的大数,用S1S2S3...Sn表示,其中Si表示数的第i位,S1是数的最高位,告诉你一些限制条件,每个条 件表示为四个数,l1,r1,l2,r2,即两 ...

  2. bzoj 3450 DP

    首先我们设len[i]表示前i位,从第i位往前拓展,期望有多少个'o',那么比较容易的转移 len[i]=len[i-1]+1 s[i]='o' len[i]=0 s[i]='x' len[i]=(l ...

  3. jQuery实现用户头像裁剪插件cropbox.js

    几乎每一个网页是必备图片上传,图片裁剪功能,这里通过cropbox.js插件实现该功能. <script src="js/jquery-1.11.1.min.js">& ...

  4. JSX语法规范

    1.只有一个开始节点和一个尾节点 正确的写法 ReactDOM.render( <div>hello,你好</div>, document.body ) 错误的写法,开始节点和 ...

  5. hydra 密码破解工具详解

    一.简介 hydra是著名黑客组织thc的一款开源的暴力密码破解工具,可以在线破解多种密码.官 网:http://www.thc.org/thc-hydra,可支持AFP, Cisco AAA, Ci ...

  6. Vue组件-动态组件

    动态组件 通过使用保留的 <component> 元素,动态地绑定到它的 is 特性,可以让多个组件使用同一个挂载点,并动态切换: <div id="app6"& ...

  7. 手動設定 電池溫度 mtk platform

    adb root adb shell echo "3 1 27" > ./proc/mtk_battery_cmd/battery_cmd 27 即是所要設定的溫度, 此設定 ...

  8. GLIBCXX_3.4.9' not found - 解决办法

    GLIBCXX_3.4.9' not found - 解决办法 http://blog.csdn.net/u012425536/article/details/26559653 https://koj ...

  9. 蓝屏代码0X0000007B可能是SATA mode问题

    Win7蓝屏代码0X0000007B可能是硬盘模式的问题,我进入BIOS把SATA的mode从Enhanced改为Compatible(及IDE兼容模式)结果系统可以顺利启动没有问题.       从 ...

  10. C基础 万能动态数组

    引言 - 动态数组切入 开发中动态类型无外乎list 或者 vector, 这里就是在C中实现vector结构容器部分. 对于C中使用的数据结构, 可以参照下面感觉很不错框架源码学习 , 感觉是< ...