骑士游戏

Time Limit: 30 Sec  Memory Limit: 256 MB
[Submit][Status][Discuss]

Description

  在这个游戏中,JYY一共有两种攻击方式,一种是普通攻击,一种是法术攻击。
  两种攻击方式都会消耗JYY一些体力。
  采用普通攻击进攻怪兽并不能把怪兽彻底杀死,怪兽的尸体可以变出其他一些新的怪兽,注意一个怪兽可能经过若干次普通攻击后变回一个或更多同样的怪兽;
  而采用法术攻击则可以彻底将一个怪兽杀死。
  当然了,一般来说,相比普通攻击,法术攻击会消耗更多的体力值(但由于游戏系统bug,并不保证这一点)。
  游戏世界中一共有N种不同的怪兽,分别由1到N编号,现在1号怪兽入侵村庄了,JYY想知道,最少花费多少体力值才能将所有村庄中的怪兽全部杀死呢?

Input

  第一行包含一个整数N。
  接下来N行,每行描述一个怪兽的信息;
  其中第i行包含若干个整数,前三个整数为Si,Ki和Ri,表示对于i号怪兽,
  普通攻击需要消耗Si的体力,法术攻击需要消耗Ki的体力,同时i号怪兽死亡后会产生Ri个新的怪兽。表示一个新出现的怪兽编号。同一编号的怪兽可以出现多个。

Output

  输出一行一个整数,表示最少需要的体力值。

Sample Input

  4
  4 27 3 2 3 2
  3 5 1 2
  1 13 2 4 2
  5 6 1 2

Sample Output

  26

HINT

  2<=N<=2*10^5, 1<=Ri,Sigma(Ri)<=10^6, 1<=Ki,Si<=5*10^14

Solution

  首先,若是呈现树形结构,我们显然可以得到一个DP:f[i] = min(f[i], Σf[son[i]])f[i]表示消灭 i 最小花费)。

  但是,显然数据会出现有的情况。所以我们这个DP是有后效性的。

  那么我们就可以用Spfa来消除这个后效性,具体就是:若一个点的 f 在某处被更新了,那么把father[i]重新入队计算。

  (复杂度BearChild也不会算啊QAQ)

Code

 #include<iostream>
#include<string>
#include<algorithm>
#include<cstdio>
#include<cstring>
#include<cstdlib>
#include<cmath>
#include<queue>
using namespace std;
typedef long long s64; const int ONE = ;
const int MOD = 1e9 + ; int n, x;
s64 f[ONE], unit[ONE]; int next[ONE], first[ONE], go[ONE], tot;
int nextop[ONE], firstop[ONE], goop[ONE], totop; queue <int> q; int get()
{
int res=,Q=; char c;
while( (c=getchar())< || c>)
if(c=='-')Q=-;
if(Q) res=c-;
while((c=getchar())>= && c<=)
res=res*+c-;
return res*Q;
} void Add(int u, int v)
{
next[++tot] = first[u], first[u] = tot, go[tot] = v;
nextop[++totop] = firstop[v], firstop[v] = totop, goop[totop] = u;
} void Spfa()
{
for(int i = ; i <= n; i++) q.push(i);
while(!q.empty())
{
int u = q.front(); q.pop(); s64 res = unit[u];
for(int e = first[u]; e; e = next[e])
res += f[go[e]]; if(res < f[u])
{
f[u] = res;
for(int e = firstop[u]; e; e = nextop[e])
q.push(goop[e]);
}
}
} int main()
{
n = get();
for(int i = ; i <= n; i++)
{
scanf("%lld %lld", &unit[i], &f[i]);
x = get();
while(x--) Add(i, get());
} Spfa(); printf("%lld", f[]);
}

【BZOJ3875】【AHOI2014】骑士游戏 [Spfa][DP]的更多相关文章

  1. BZOJ 3875: [Ahoi2014]骑士游戏 spfa dp

    3875: [Ahoi2014]骑士游戏 题目连接: http://www.lydsy.com/JudgeOnline/problem.php?id=3875 Description [故事背景] 长 ...

  2. [bzoj3875] [Ahoi2014]骑士游戏

    3875: [Ahoi2014]骑士游戏 Time Limit: 30 Sec  Memory Limit: 256 MBSubmit: 844  Solved: 440[Submit][Status ...

  3. LUOGU P4042 [AHOI2014/JSOI2014]骑士游戏 (spfa+dp)

    传送门 解题思路 首先设\(f[x]\)表示消灭\(x\)的最小花费,那么转移方程就是 \(f[x]=min(f[x],\sum f[son[x]] +s[x])\),如果这个转移是一个有向无环图,那 ...

  4. [BZOJ3875][AHOI2014]骑士游戏(松弛操作)

    题目:http://www.lydsy.com:808/JudgeOnline/problem.php?id=3875 分析: 类似于spfa求最短路,设d[i]表示完全消灭i号怪物的最小花费,我们对 ...

  5. BZOJ 3875: [Ahoi2014]骑士游戏 dp+spfa

    题目链接: 题目 3875: [Ahoi2014]骑士游戏 Time Limit: 30 Sec Memory Limit: 256 MB 问题描述 [故事背景] 长期的宅男生活中,JYY又挖掘出了一 ...

  6. BZOJ 3875: [Ahoi2014]骑士游戏

    d[i]表示消灭i所需的最小体力值, d[i] = min(S[i], K[i]+Σd[x]), Σd[x]表示普通攻击而产生的其他怪兽. 因为不是DAG, 所以用个队列类似SPFA来更新答案. -- ...

  7. 【BZOJ3875】[Ahoi2014&Jsoi2014]骑士游戏 SPFA优化DP

    [BZOJ3875][Ahoi2014&Jsoi2014]骑士游戏 Description  [故事背景] 长期的宅男生活中,JYY又挖掘出了一款RPG游戏.在这个游戏中JYY会扮演一个英勇的 ...

  8. bzoj3875 【Ahoi2014】骑士游戏 spfa处理后效性动规

    骑士游戏 [故事背景] 长期的宅男生活中,JYY又挖掘出了一款RPG游戏.在这个游戏中JYY会 扮演一个英勇的骑士,用他手中的长剑去杀死入侵村庄的怪兽. [问题描述] 在这个游戏中,JYY一共有两种攻 ...

  9. bzoj 3875: [Ahoi2014&Jsoi2014]骑士游戏【dp+spfa】

    设f[i]为杀死i的最小代价,显然\( f[i]=min(k[i],s[i]+\sum f[to]) \) 但是这个东西有后效性,所以我们使用spfa来做,具体就是每更新一个f[i],就把能被它更新的 ...

随机推荐

  1. Codeforces Round #367 (Div. 2) D. Vasiliy's Multiset Trie

    题目链接: http://codeforces.com/contest/706/problem/D D. Vasiliy's Multiset time limit per test:4 second ...

  2. PMS

    "通讯录--PMS"功能介绍及界面展示 首先是我们的登陆界面,以绿色为基调,配以繁星组成的星阵图,寓意为"散是满天星",希望每一位同学能在各自的生活中闪耀. 当 ...

  3. 关于CString总结

    前言:串操作是编程中最常用也最基本的操作之一. 做为VC程序员,无论是菜鸟或高手都曾用过CString.而且好像实际编程中很难离得开它(虽然它不是标准C++中的库).因为MFC中提供的这个类对 我们操 ...

  4. C# 正则表达式 最全的验证类

    ///<summary> ///验证输入的数据是不是正整数 ///</summary> ///<param name="str">传入字符串&l ...

  5. ibatsi学习总结

    学习来源:黑马程序员 先总结一下遇到的问题 问题1:1,resultMap 可以不写,比如配置1 配置1: <typeAlias alias="puser" type=&qu ...

  6. JAVA学习之HashCode

    public native int hashCode(); 返回该对象的哈希码值.支持此方法是为了提高哈希表(例如 java.util.Hashtable 提供的哈希表)的性能. 一.HashCode ...

  7. TCP协议详解7层和4层解析(美团,阿里) 尤其是三次握手,四次挥手 具体发送的报文和状态都要掌握

    如果想了解HTTP的协议结构,原理,post,get的区别(阿里面试题目),请参考:HTTP协议 结构,get post 区别(阿里面试) 这里有个大白话的解说,可以参考:TCP/IP协议三次握手和四 ...

  8. c#对xml的操作

    操作xml可以通过XElement对象,比较方便的使用列举以下几点: 把字符串转变成XElement,保存成xml文件,加载xml文件: //把字符串解析成XElement对象 string str ...

  9. BZOJ 1263 整数划分(数学+高精度)

    我们不妨考虑可以划分为实数的情况,设划分为x份实数,使得总乘积最大. 易得当每一份都相等时乘积最大.即 ans=(n/x)^x. 现在只需要求出这个函数取得最大值的时候x的取值了. 两边取对数,则有l ...

  10. Go语言【第七篇】:Go函数

    Go语言函数 函数是基本的代码块,用于执行某个任务.Go语言最少有个main()函数,可以通过函数来划分不同功能,逻辑上每个函数执行的是指定的任务.函数声明告诉了编译器函数的名称,返回类型和参数.Go ...