【算法】博弈论+记忆化搜索

【题意】给定n堆石子,两人轮流操作,每个人可以合并两堆石子或拿走一个石子,不能操作者输,问是否先手必胜

【题解】

首先,若所有石子堆的石子数>1,显然总操作数为(石子数+石子堆数-1),奇数先手必胜,偶数先手必败。

若有部分石子堆的石子数=1,情况较复杂,考虑一下五种情形:

1. 拿走石子数=1的石子堆

2.减少操作次数(拿走石子或合并石子堆)

3.操作数减至1时,视为多一堆石子数=1的石子堆(若操作数不为1,即使出现也会被再次操作抵消)

4.合并两个石子数=1的石子堆

5.合并一个石子数=1和一个石子数>1的石子堆

对于(石子数=1的石子堆数(<=50),总操作数(<=50049))二元组进行记忆化搜索。(记忆化是针对所有数据的统一记忆化,这样50*50049就不会超时)

#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std; int n,a[],f[][];
int dfs(int x,int y)
{
if(~f[x][y])return f[x][y];
if(x==)return y&;
if(y==)return dfs(x+,);//
if(x&&!dfs(x-,y))return f[x][y]=;
if(y&&!dfs(x,y-))return f[x][y]=;
if(x>&&!dfs(x-,y++(y?:)))return f[x][y]=;
if(x&&y&&!dfs(x-,y+))return f[x][y]=;
return f[x][y]=;
}
int main()
{
int T;
scanf("%d",&T);
memset(f,-,sizeof(f));
while(T--)
{
scanf("%d",&n);
//memset(f,-1,sizeof(f));
int tmp=,sum=;
for(int i=;i<=n;i++){scanf("%d",&a[i]);if(a[i]==)tmp++;else sum+=a[i];}
if(dfs(tmp,n-tmp-+sum))printf("YES\n");else printf("NO\n");
}
return ;
}

【BZOJ】3895: 取石子的更多相关文章

  1. bzoj 3895: 取石子

    $ \color{#0066ff}{ 题目描述 }$ Alice和Bob两个好朋含友又开始玩取石子了.游戏开始时,有N堆石子 排成一排,然后他们轮流操作(Alice先手),每次操作时从下面的规则中任选 ...

  2. BZOJ 3895: 取石子[SG函数 搜索]

    有N堆石子 ·从某堆石子中取走一个 ·合并任意两堆石子 不能操作的人输. 100%的数据满足T<=100,  N<=50. ai<=1000   容易发现基础操作数$d=\sum a ...

  3. bzoj 3895 取石子——博弈论

    题目:https://www.lydsy.com/JudgeOnline/problem.php?id=3895 看题解:https://blog.csdn.net/popoqqq/article/d ...

  4. bzoj 3895 取石子 —— 博弈论

    题目:https://www.lydsy.com/JudgeOnline/problem.php?id=3895 看了博客:https://blog.csdn.net/popoqqq/article/ ...

  5. bzoj 1874 取石子游戏 题解 &amp; SG函数初探

    [原题] 1874: [BeiJing2009 WinterCamp]取石子游戏 Time Limit: 5 Sec  Memory Limit: 162 MB Submit: 334  Solved ...

  6. BZOJ 1874 取石子游戏 - SG函数

    Description $N$堆石子, $M$种取石子的方式, 最后取石子的人赢, 问先手是否必胜 $A_i <= 1000$,$ B_i <= 10$ Solution 由于数据很小, ...

  7. BZOJ 3895 3895: 取石子 / Luogu SP9934 ALICE - Alice and Bob (博弈 记忆化搜索)

    转自PoPoQQQ大佬博客 题目大意:给定n堆石子,两人轮流操作,每个人可以合并两堆石子或拿走一个石子,不能操作者输,问是否先手必胜 直接想很难搞,我们不妨来考虑一个特殊情况 假设每堆石子的数量都&g ...

  8. BZOJ 1413 取石子游戏(DP)

    题目链接:http://61.187.179.132/JudgeOnline/problem.php?id=1413 题意:n堆石子排成一排.每次只能在两侧的两堆中选择一堆拿.至少拿一个.谁不能操作谁 ...

  9. BZOJ 1874 取石子游戏 (NIM游戏)

    题解:简单的NIM游戏,直接计算SG函数,至于找先手策略则按字典序异或掉,去除石子后再异或判断,若可行则直接输出. #include <cstdio> const int N=1005; ...

随机推荐

  1. iOS开发解决页面滑动返回跟scrollView左右划冲突

    -(BOOL)gestureRecognizer:(UIGestureRecognizer *)gestureRecognizer shouldRecognizeSimultaneouslyWithG ...

  2. Swift as as!和as?的区别

    1.as的使用场合 1.从派生类转换为基类,向上转类型(upcasting) class Animal{} class Dog:Animal{} let cat = ANimal() let dog ...

  3. Dubbo和Spring Cloud开发框架对比

    前言 微服务架构是互联网很热门的话题,是互联网技术发展的必然结果.它提倡将单一应用程序划分成一组小的服务,服务之间互相协调.互相配合,为用户提供最终价值.虽然微服务架构没有公认的技术标准和规范或者草案 ...

  4. C#多线程间的同步问题

    使用线程时最头痛的就是共享资源的同步问题,处理不好会得到错误的结果,C#处理共享资源有以下几种: 1.lock锁 需要注意的地方: 1).lock不能锁定空值某一对象可以指向Null,但Null是不需 ...

  5. CCS3 动画-鼠标放上去放大背景图片

    ---〉 效果如上,一个简单的过渡放大效果, <!DOCTYPE HTML> <html> <body> <style> #test{ width:30 ...

  6. java基础简介

    一.软件开发 软件:是由数据和指令组成的(例:计算器) 如何实现软件开发呢?    就是使用开发工具和计算机语言做出东西来 二.常用dos命令 d: 回车 盘符切换 dir(directory):列出 ...

  7. Qt信号与槽机制

    一.信号和槽机制 信号和槽用于两个对象之间的通信,信号和槽机制是Qt的核心特征,也是Qt不同于其他开发框架的最突出的特征.在GUI编程中,当改变了一个部件时,总希望其他部件也能了解到该变化.更一般来说 ...

  8. BZOJ4755 JSOI2016扭动的回文串(二分答案+哈希)

    显然答案应该是由单串以某位置为中心的极长回文串继续在另一个串里拓展得到的.枚举中间位置二分答案,哈希判断即可.注意考虑清楚怎么处理偶回文,比如像manacher一样加分隔符. #include< ...

  9. Android 动画之View动画效果和Activity切换动画效果

    View动画效果: 1.>>Tween动画通过对View的内容进行一系列的图形变换(平移.缩放.旋转.透明度变换)实现动画效果,补间动画需要使用<set>节点作为根节点,子节点 ...

  10. GCJ2008 APAC local onsites C Millionaire

    自己Blog的第一篇文章,嗯... 接触这道题,是从<挑战程序设计竞赛>这本书看来的,其实头一遍读题解,并没有懂.当然现在已经理解了,想想当初可能是因为考虑两轮的那张概率图的问题.于是决定 ...