【算法】博弈论+记忆化搜索

【题意】给定n堆石子,两人轮流操作,每个人可以合并两堆石子或拿走一个石子,不能操作者输,问是否先手必胜

【题解】

首先,若所有石子堆的石子数>1,显然总操作数为(石子数+石子堆数-1),奇数先手必胜,偶数先手必败。

若有部分石子堆的石子数=1,情况较复杂,考虑一下五种情形:

1. 拿走石子数=1的石子堆

2.减少操作次数(拿走石子或合并石子堆)

3.操作数减至1时,视为多一堆石子数=1的石子堆(若操作数不为1,即使出现也会被再次操作抵消)

4.合并两个石子数=1的石子堆

5.合并一个石子数=1和一个石子数>1的石子堆

对于(石子数=1的石子堆数(<=50),总操作数(<=50049))二元组进行记忆化搜索。(记忆化是针对所有数据的统一记忆化,这样50*50049就不会超时)

#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std; int n,a[],f[][];
int dfs(int x,int y)
{
if(~f[x][y])return f[x][y];
if(x==)return y&;
if(y==)return dfs(x+,);//
if(x&&!dfs(x-,y))return f[x][y]=;
if(y&&!dfs(x,y-))return f[x][y]=;
if(x>&&!dfs(x-,y++(y?:)))return f[x][y]=;
if(x&&y&&!dfs(x-,y+))return f[x][y]=;
return f[x][y]=;
}
int main()
{
int T;
scanf("%d",&T);
memset(f,-,sizeof(f));
while(T--)
{
scanf("%d",&n);
//memset(f,-1,sizeof(f));
int tmp=,sum=;
for(int i=;i<=n;i++){scanf("%d",&a[i]);if(a[i]==)tmp++;else sum+=a[i];}
if(dfs(tmp,n-tmp-+sum))printf("YES\n");else printf("NO\n");
}
return ;
}

【BZOJ】3895: 取石子的更多相关文章

  1. bzoj 3895: 取石子

    $ \color{#0066ff}{ 题目描述 }$ Alice和Bob两个好朋含友又开始玩取石子了.游戏开始时,有N堆石子 排成一排,然后他们轮流操作(Alice先手),每次操作时从下面的规则中任选 ...

  2. BZOJ 3895: 取石子[SG函数 搜索]

    有N堆石子 ·从某堆石子中取走一个 ·合并任意两堆石子 不能操作的人输. 100%的数据满足T<=100,  N<=50. ai<=1000   容易发现基础操作数$d=\sum a ...

  3. bzoj 3895 取石子——博弈论

    题目:https://www.lydsy.com/JudgeOnline/problem.php?id=3895 看题解:https://blog.csdn.net/popoqqq/article/d ...

  4. bzoj 3895 取石子 —— 博弈论

    题目:https://www.lydsy.com/JudgeOnline/problem.php?id=3895 看了博客:https://blog.csdn.net/popoqqq/article/ ...

  5. bzoj 1874 取石子游戏 题解 &amp; SG函数初探

    [原题] 1874: [BeiJing2009 WinterCamp]取石子游戏 Time Limit: 5 Sec  Memory Limit: 162 MB Submit: 334  Solved ...

  6. BZOJ 1874 取石子游戏 - SG函数

    Description $N$堆石子, $M$种取石子的方式, 最后取石子的人赢, 问先手是否必胜 $A_i <= 1000$,$ B_i <= 10$ Solution 由于数据很小, ...

  7. BZOJ 3895 3895: 取石子 / Luogu SP9934 ALICE - Alice and Bob (博弈 记忆化搜索)

    转自PoPoQQQ大佬博客 题目大意:给定n堆石子,两人轮流操作,每个人可以合并两堆石子或拿走一个石子,不能操作者输,问是否先手必胜 直接想很难搞,我们不妨来考虑一个特殊情况 假设每堆石子的数量都&g ...

  8. BZOJ 1413 取石子游戏(DP)

    题目链接:http://61.187.179.132/JudgeOnline/problem.php?id=1413 题意:n堆石子排成一排.每次只能在两侧的两堆中选择一堆拿.至少拿一个.谁不能操作谁 ...

  9. BZOJ 1874 取石子游戏 (NIM游戏)

    题解:简单的NIM游戏,直接计算SG函数,至于找先手策略则按字典序异或掉,去除石子后再异或判断,若可行则直接输出. #include <cstdio> const int N=1005; ...

随机推荐

  1. Kafka性能之道

    Kafka高性能之道 高效使用磁盘 零拷贝 批处理和压缩 Partition ISR 高效使用磁盘 >顺序写cipan >Append Only(数据不更新,无记录级的数据删除,只会整个s ...

  2. [OS] 信号量(Semaphore)

    一个信号量S是一个整型量,除对其初始化外,它只能由两个原子操作P和V来访问.P和V的名称来源于荷兰文proberen(测试)和verhogen(增量),后面亦将P/V操作分别称作wait(), sig ...

  3. Apache与Tomcat负载均衡

    Apache HTTP Server 与 Tomcat 的三种连接方式JK,http_proxy,ajp_proxy.下面逐个介绍一下(本篇介绍的示例都是基于前面介绍的已经搭建好的Tomcat集群,都 ...

  4. android四大组件(一)Activity

    一.创建一个新的Activity 1.android的四大组件都要在清单文件里面配置 2.如果想让你的应用有多个启动图标,你的activity需要这样配置 <intent-filter> ...

  5. hdu 2768 Cat vs. Dog (二分匹配)

    Cat vs. Dog Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Total ...

  6. logback 按天输出日志

    配置文件: 在resouces添加文件logback-spring.xml <?xml version="1.0" encoding="UTF-8"?&g ...

  7. Oracle 验证A表的2个字段组合不在B表2个字段组合里的数据

    select id, name from TAB_A t where not exists (select 1 from TAB_B t1 where t.id = t1.id and t.name ...

  8. [洛谷P1452]Beauty Contest

    题目大意:给你$n$个点,求出其中最远点的距离 题解:求出凸包,最远点一定都在凸包上,可以对每条边求出最远的点(可以双指针),然后求出和这条边的端点的距离,更新答案 卡点:最开始对每个点求出最远点,但 ...

  9. BZOJ1149:[CTSC/APIO2007]风铃——题解

    https://www.lydsy.com/JudgeOnline/problem.php?id=1149 https://www.luogu.org/problemnew/show/P3621 sb ...

  10. [辅助软件] 微信小程序开发资源汇总 接入指南

    https://github.com/justjavac/awesome-wechat-weapp https://github.com/justjavac/awesome-wechat-weapp ...