BZOJ2178:圆的面积并——题解
https://www.lydsy.com/JudgeOnline/problem.php?id=2178
给出N个圆,求其面积并。
simpson,将圆劈成两半,假设上面的叫上壳,下面的叫下壳,对这两个壳分别做一遍simpson,相减就是答案。
当然优化时间可以去掉完全包含的圆。
以及相减的时候注意同一坐标的不同解,我们要求他的并。
另外精度死活调不对,参考了:https://www.cnblogs.com/SfailSth/p/6360277.html的代码才过orz
#include<cmath>
#include<queue>
#include<cstdio>
#include<cctype>
#include<cstring>
#include<iostream>
#include<algorithm>
using namespace std;
typedef double dl;
const int N=;
const dl eps=1e-;
const dl INF=;
inline int read(){
int X=,w=;char ch=;
while(!isdigit(ch)){w|=ch=='-';ch=getchar();}
while(isdigit(ch))X=(X<<)+(X<<)+(ch^),ch=getchar();
return w?-X:X;
}
struct cir{
int x,y,r;
}p[N];
int n,tag[N];
struct node{
dl l,r;
}q[N];
inline bool cmp1(node a,node b){
return a.l<b.l||(a.l==b.l&&a.r<b.r);
}
inline bool cmp2(cir a,cir b){
return a.r<b.r;
}
inline dl f(dl x){
int cnt=;
for(int i=;i<=n;i++){
if(fabs(p[i].x-x)-p[i].r<-eps){
dl t=sqrt(p[i].r*p[i].r-(x-p[i].x)*(x-p[i].x));
q[++cnt].l=p[i].y-t;
q[cnt].r=p[i].y+t;
}
}
sort(q+,q+cnt+,cmp1);
dl h=-INF,ans=;
for(int i=;i<=cnt;i++){
if(h<q[i].l)ans+=q[i].r-q[i].l,h=q[i].r;
else if(h<q[i].r)ans+=q[i].r-h,h=q[i].r;
}
return ans;
}
inline dl simpson(dl l,dl r){
dl mid=(l+r)/;
return (f(l)+*f(mid)+f(r))*(r-l)/;
}
inline dl asr(dl l,dl r,dl ans){
dl mid=(l+r)/;
dl l1=simpson(l,mid),r1=simpson(mid,r);
if(fabs(l1+r1-ans)<eps)return l1+r1;
return asr(l,mid,l1)+asr(mid,r,r1);
}
int main(){
n=read();
for(int i=;i<=n;i++){
p[i].x=read(),p[i].y=read(),p[i].r=read();
}
sort(p+,p+n+,cmp2);
for(int i=;i<=n;i++){
for(int j=i+;j<=n;j++){
int x=p[i].x-p[j].x,y=p[i].y-p[j].y,r=p[j].r-p[i].r;
if(x*x+y*y<=r*r){
tag[i]=;break;
}
}
}
int tot=;
for(int i=;i<=n;i++)if(!tag[i])p[++tot]=p[i];
n=tot;
printf("%.3lf\n",asr(-INF,INF,simpson(-INF,INF)));
return ;
}
+++++++++++++++++++++++++++++++++++++++++++
+本文作者:luyouqi233。 +
+欢迎访问我的博客:http://www.cnblogs.com/luyouqi233/+
+++++++++++++++++++++++++++++++++++++++++++
BZOJ2178:圆的面积并——题解的更多相关文章
- [SPOJ-CIRU]The area of the union of circles/[BZOJ2178]圆的面积并
[SPOJ-CIRU]The area of the union of circles/[BZOJ2178]圆的面积并 题目大意: 求\(n(n\le1000)\)个圆的面积并. 思路: 对于一个\( ...
- BZOJ2178: 圆的面积并(格林公式)
题面 传送门 题解 好神仙-- 先给几个定义 平面单连通区域:设\(D\)是平面内一区域,若属于\(D\)内任一简单闭曲线的内部都属于\(D\),则称\(D\)为单连通区域.通俗地说,单连通区域是没有 ...
- BZOJ2178 圆的面积并 计算几何 辛普森积分
原文链接https://www.cnblogs.com/zhouzhendong/p/BZOJ2178.html 题目传送门 - BZOJ2178 题意 给出 $n(n\leq 1000)$ 个圆,求 ...
- bzoj2178: 圆的面积并
Description 给出N个圆,求其面积并 Input 先给一个数字N ,N< = 1000 接下来是N行是圆的圆心,半径,其绝对值均为小于1000的整数 Output 面积并,保留三位小数 ...
- BZOJ2178 圆的面积并(simpson积分)
板子题.可以转一下坐标防止被卡.精度和常数实在难以平衡. #include<iostream> #include<cstdio> #include<cmath> # ...
- 【题解】CIRU - The area of the union of circles [SP8073] \ 圆的面积并 [Bzoj2178]
[题解]CIRU - The area of the union of circles [SP8073] \ 圆的面积并 [Bzoj2178] 传送门: \(\text{CIRU - The area ...
- 【BZOJ2178】圆的面积并(辛普森积分)
[BZOJ2178]圆的面积并(辛普森积分) 题面 BZOJ 权限题 题解 把\(f(x)\)设为\(x\)和所有圆交的线段的并的和. 然后直接上自适应辛普森积分. 我精度死活一个点过不去,不要在意我 ...
- hdu5858 Hard problem(求两圆相交面积)
题目传送门 Hard problem Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/65536 K (Java/Other ...
- JAVA求圆的面积
import java.text.DecimalFormat;import java.util.Scanner; public class TheAreaOfCircle { public stati ...
随机推荐
- 使数据可供ArcGIS Server访问
内容来自ESRI官方文档(点击访问),简单总结如下: 1 ArcGIS Server用于发布服务的数据必须存储在服务器可以访问的位置: 2 这样的位置有三种类型: 本地路径:将数据本地存储在每台 Ar ...
- redmine本地安装部署
1.railsinstaller-3.2.0.exe 下载地址 http://railsinstaller.org/en 安装railsinstaller 一直点next就可以了,安装完成之后C盘会 ...
- 安装mysql-5.7.12-winx64
之前安装mysql时未做总结,换新电脑,补上安装记录,安装的时候,找了些网友的安装记录,发现好多坑 1.mysql-5.7.12-winx64.zip下载 官方下载地址:http://dev.mysq ...
- 打包一个Docker镜像,让你的好友加载开启一个容器,并且每隔一秒输出hello,world到指定的文件中
一.两个脚本代码 Dockerfile FROM bash COPY . /usr/herui/ WORKDIR /usr/herui/ CMD [ "sh", "hel ...
- js随机数算法
function rnd( seed ){ seed = ( seed * 9301 + 49297 ) % 233280; //为何使用这三个数? return seed / ( 233280.0 ...
- 20145214 《Java程序设计》第5周学习总结
20145214 <Java程序设计>第5周学习总结 教材学习内容总结 try和catch Java中所有错误都会被包装为对象,可以尝试try执行程序并捕捉catch代表错误的对象后做一些 ...
- Linux GCC编译
.a 静态库(打包文件 由多个.o文件打包而成) .c 未经过预处理的C源码 .h C头文件 .i 经过预处理的C源码(将头文件内容加载到c文件中) .o 编译之后产生的目标文件 .s 生成的汇编语言 ...
- javabean的内省技术和BeanUtils的使用
一.关于javabean javabean是固定写法的java类 书写格式为: 1)必须有无参构造函数 2)属性必须私有, 我们称为字段 3)提供标准的getter和setter 例: name 字段 ...
- LintCode-371.用递归打印数字
用递归打印数字 用递归的方法找到从1到最大的N位整数. 注意事项 用下面这种方式去递归其实很容易: recursion(i) { if i > largest number: return re ...
- GPS定位,经纬度附近地点查询–C#实现方法
摘要:目前的工作是需要手机查找附近N米以内的商户,功能如下图数据库中记录了商家在百度标注的经纬度(如:116.412007,39.947545),最初想法以圆心点为中心点,对半径做 ...