题目链接

LOJ:https://loj.ac/problem/3057

洛谷:https://www.luogu.org/problemnew/show/P5292

Solution

先膜一发\(myy\),这里是官方题解

对于\(30\)分,可以得到一个很显然的做法:设\(f[i][j]\)表示\(i\to j\)的答案,然后枚举\(i,j\)的出边转移,这样做是\(O(m^2)\)的。

对于\(100\)分,注意到点的规模没变,我们有一个缩边的想法。

我们把边分成三类,同色的两种和异色的一种,对每类分别建图,然后我们对每个联通块进行考虑:

  • 如果当前联通块是二分图,那么可以说明从\(i\)点到\(j\)点所经过的边数必然只能是奇数或偶数,那么我们任意处理出一棵生成树,容易发现这棵生成树和原图等价(如果这边多走了就在另一边来回走以抵消)。
  • 如果当前联通块不是二分图,那么边数可以是奇数或偶数,那么我们只需要在生成树任意加一个自环就好了,这样的话就可以满足边数任意奇偶,注意异色边建出来的图不可能有这种情况。

缩完之后可以发现边数是\(O(n)\)级别的,那么我们套用上边的暴力,复杂度达到了\(O(n^2)\),足已通过此题。

#include<bits/stdc++.h>
using namespace std; void read(int &x) {
x=0;int f=1;char ch=getchar();
for(;!isdigit(ch);ch=getchar()) if(ch=='-') f=-f;
for(;isdigit(ch);ch=getchar()) x=x*10+ch-'0';x*=f;
} void print(int x) {
if(x<0) putchar('-'),x=-x;
if(!x) return ;print(x/10),putchar(x%10+48);
}
void write(int x) {if(!x) putchar('0');else print(x);putchar('\n');} #define lf double
#define ll long long const int maxn = 2e5+10;
const int inf = 1e9;
const lf eps = 1e-8; char s[maxn];
int n,m,Q,vis[maxn],sta[maxn],top,f[5050][5050],flag; struct Graph {
int head[maxn],tot,fa[maxn];
struct edge{int to,nxt;}e[maxn*20]; void add(int u,int v) {e[++tot]=(edge){v,head[u]},head[u]=tot;}
void ins(int u,int v) {add(u,v),add(v,u);} void dfs(int x,int c) {
vis[x]=c,sta[++top]=x;
for(int i=head[x];i;i=e[i].nxt)
if(!vis[e[i].to]) dfs(e[i].to,3-c),fa[e[i].to]=x;
else flag|=(vis[e[i].to]!=3-c);
} void solve() {
queue<pair<int,int > > q;
for(int i=1;i<=n;i++) f[i][i]=1,q.push(make_pair(i,i));
for(int x=1;x<=n;x++)
for(int i=head[x];i;i=e[i].nxt)
if(s[x]==s[e[i].to]) f[x][e[i].to]=1,q.push(make_pair(x,e[i].to));
while(!q.empty()) {
int x=q.front().first,y=q.front().second;q.pop();
for(int i=head[x];i;i=e[i].nxt)
for(int u,v,j=head[y];j;j=e[j].nxt)
if(s[u=e[i].to]==s[v=e[j].to])
if(!f[u][v]) f[u][v]=1,q.push(make_pair(u,v));
}
}
}g[3],t; int main() {
read(n),read(m),read(Q);scanf("%s",s+1);
for(int i=1,x,y;i<=m;i++) {
read(x),read(y);
if(s[x]!=s[y]) g[0].ins(x,y);
else if(s[x]=='1') g[1].ins(x,y);
else g[2].ins(x,y);
}
for(int i=0;i<=2;i++) {
memset(vis,0,sizeof vis);
for(int j=1;j<=n;j++)
if(!vis[j]) {
top=flag=0,g[i].dfs(j,1);
while(top) {
int x=sta[top];
if(g[i].fa[x]) t.ins(g[i].fa[x],x);top--;
}if(flag) t.ins(j,j);
}
}
t.solve();
for(int i=1,x,y;i<=Q;i++) read(x),read(y),puts(f[x][y]?"YES":"NO");
return 0;
}

[LOJ3057] [HNOI2019] 校园旅行的更多相关文章

  1. 【BZOJ5492】[HNOI2019]校园旅行(bfs)

    [HNOI2019]校园旅行(bfs) 题面 洛谷 题解 首先考虑暴力做法怎么做. 把所有可行的二元组全部丢进队列里,每次两个点分别向两侧拓展一个同色点,然后更新可行的情况. 这样子的复杂度是\(O( ...

  2. [HNOI2019]校园旅行(构造+生成树+动规)

    题目 [HNOI2019]校园旅行 做法 最朴素的做法就是点对扩展\(O(m^2)\) 发现\(n\)比较小,我们是否能从\(n\)下手减少边数呢?是肯定的 单独看一个颜色的联通块,如果是二分图,我们 ...

  3. Luogu P5292 [HNOI2019]校园旅行

    非常妙的一道思博题啊,不愧是myy出的题 首先我们考虑一个暴力DP,直接开一个数组\(f_{i,j}\)表示\(i\to j\)的路径能否构成回文串 考虑直接拿一个队列来转移,队列里存的都是\(f_{ ...

  4. [HNOI2019]校园旅行

    题意 https://www.luogu.org/problemnew/show/P5292 思考 最朴素的想法,从可行的二元组(u,v)向外拓展,及u的出边所指的颜色与v的出边所指的颜色若相同,继续 ...

  5. 洛谷P5292 [HNOI2019]校园旅行(二分图+最短路)

    题面 传送门 题解 如果暴力的话,我们可以把所有的二元组全都扔进一个队列里,然后每次往两边更新同色点,这样的话复杂度是\(O(m^2)\) 怎么优化呢? 对于一个同色联通块,如果它是一个二分图,我们只 ...

  6. 【洛谷5292】[HNOI2019] 校园旅行(思维DP)

    点此看题面 大致题意: 给你一张无向图,每个点权值为\(0\)或\(1\),多组询问两点之间是否存在一条回文路径. 暴力\(DP\) 首先,看到\(n\)如此之小(\(n\le5000\)),便容易想 ...

  7. bzoj5492:[Hnoi2019]校园旅行

    传送门 %%%myy 考虑30分做法:暴力bfs,\(f[i][j]\)表示\(i\)到\(j\)可以形成回文串 然而为什么我场上只想到了70分做法,完全没想到30分怎么写.. 100分: 考虑缩边, ...

  8. [HNOI2019]校园旅行(建图优化+bfs)

    30分的O(m^2)做法应该比较容易想到:令f[i][j]表示i->j是否有解,然后把每个路径点数不超过2的有解状态(u,v)加入队列,然后弹出队列时,两点分别向两边搜索边,发现颜色一样时,再修 ...

  9. Loj #3057. 「HNOI2019」校园旅行

    Loj #3057. 「HNOI2019」校园旅行 某学校的每个建筑都有一个独特的编号.一天你在校园里无聊,决定在校园内随意地漫步. 你已经在校园里呆过一段时间,对校园内每个建筑的编号非常熟悉,于是你 ...

随机推荐

  1. 【费元星原创】一键安装Hadoo2.7.6 集群完全分布式脚本-完美解决

    有Bug 欢迎反馈,我不烦:feiyuanxing@gmail.com 1 #!/bin/bash #@author:feiyuanxing [既然笨到家,就要努力到家] #@date:2017-01 ...

  2. spark 相关

    Spark为什么会比mapreduce快? 1.Spark减少了中间过程的磁盘读写,数据很多时候不需要落地,从而提升了效率. 2.Spark基于内存的读写,减少了磁盘IO.node数据交互的通信时间. ...

  3. PostFix支持SMTP认证

    安装cyrus-sasl yum -y install cyrus-sasl* 启动服务,开机启动 service saslauthd start chkconfig saslauthd on 配置p ...

  4. hdu1061Rightmost Digit(快速幂取余)

    Rightmost Digit Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)T ...

  5. CentOS 7.2使用tomcat部署jenkins2.130

    一.jenkins介绍 Jenkins是一个功能强大的应用程序,允许持续集成和持续交付项目,无论用的是什么平台.这是一个免费的源代码,可以处理任何类型的构建或持续集成.集成Jenkins可以用于一些测 ...

  6. 爬虫1.5-ajax数据爬取

    目录 爬虫-ajax数据爬取 1. ajax数据 2. selenium+chromedriver知识准备 3. selenium+chromedriver实战拉勾网爬虫代码 爬虫-ajax数据爬取 ...

  7. Apache POI:Excel读写库

    1)Apache POI 简介 Apache POI是用Java编写的免费开源的跨平台的 Java API,Apache POI提供API给Java程式对Microsoft Office格式档案读和写 ...

  8. 提升方法-AdaBoost

    提升方法通过改变训练样本的权重,学习多个分类器(弱分类器/基分类器)并将这些分类器进行线性组合,提高分类的性能. AdaBoost算法的特点是不改变所给的训练数据,而不断改变训练数据权值的分布,使得训 ...

  9. 火狐metamask账号

    火狐metamask lock trophy pyramid sunny aim inmate body sense sing castle cinnamon cram

  10. 贵州省未来二十年的投资机会的探讨2>

    房产投资 升值最快的 在教育资源丰富  生活方便的 地方 价格和地段取其中之一. 其次 车位 再其次墓地等 公寓住房. 还有商标 和网站注册 公司注册 除了以上的这些  还有茅台生效酒 收藏