项目目标:

Boston Public Schools Geo数据是来自于Boston地区的公共学校的数据,具体描述了学校的坐标,名字,类型等。基于此数据,我们可以学习一些基本的Python数据分析的方法。例如,研究学校的分布情况,类型统计等。

数据集介绍:

数据集的介绍如下,其中比较重要的字段有X,Y坐标,ADDRESS地址,ZIPCODE,School类型

Data columns (total 21 columns):
X 131 non-null float64
Y 131 non-null float64
OBJECTID_1 131 non-null int64
OBJECTID 131 non-null int64
BLDG_ID 131 non-null int64
BLDG_NAME 131 non-null object
ADDRESS 131 non-null object
CITY 131 non-null object
ZIPCODE 131 non-null int64
CSP_SCH_ID 131 non-null int64
SCH_ID 131 non-null int64
SCH_NAME 131 non-null object
SCH_LABEL 131 non-null object
SCH_TYPE 131 non-null object
SHARED 131 non-null object
COMPLEX 131 non-null object
Label 131 non-null int64
TLT 131 non-null int64
PL 131 non-null object
POINT_X 131 non-null float64
POINT_Y 131 non-null float64

关键代码实现:

  1. 加载数据

    schools = pd.read_csv('../input/Public_Schools.csv')
    schools.info()

    可以看到数据字段如下,一共有21个字段,其中有9个Object类型,4个float64, 8个int64

    <class 'pandas.core.frame.DataFrame'>
    RangeIndex: 131 entries, 0 to 130
    Data columns (total 21 columns):
    X 131 non-null float64
    Y 131 non-null float64
    OBJECTID_1 131 non-null int64
    OBJECTID 131 non-null int64
    BLDG_ID 131 non-null int64
    BLDG_NAME 131 non-null object
    ADDRESS 131 non-null object
    CITY 131 non-null object
    ZIPCODE 131 non-null int64
    CSP_SCH_ID 131 non-null int64
    SCH_ID 131 non-null int64
    SCH_NAME 131 non-null object
    SCH_LABEL 131 non-null object
    SCH_TYPE 131 non-null object
    SHARED 131 non-null object
    COMPLEX 131 non-null object
    Label 131 non-null int64
    TLT 131 non-null int64
    PL 131 non-null object
    POINT_X 131 non-null float64
    POINT_Y 131 non-null float64
    dtypes: float64(4), int64(8), object(9)
    memory usage: 21.6+ KB


    2.接下来,探索数据的缺失值

    schools.isnull().any() 

    可以看到,数据没有缺失值

     X False
    Y False
    OBJECTID_1 False
    OBJECTID False
    BLDG_ID False
    BLDG_NAME False
    ADDRESS False
    CITY False
    ZIPCODE False
    CSP_SCH_ID False
    SCH_ID False
    SCH_NAME False
    SCH_LABEL False
    SCH_TYPE False
    SHARED False
    COMPLEX False
    Label False
    TLT False
    PL False
    POINT_X False
    POINT_Y False
    dtype: bool
  2. 接下来,Count frequency of schools in each city

     schools_per_city = schools['CITY'].value_counts()
    sns.set()
    plt.rcParams['figure.figsize'] = [20, 7]
    sns.barplot(x=schools_per_city.index, y=schools_per_city.get_values())

可以看到不同地区的公立学校不同数量

  1. 按照ZIPCode统计学校情况

     school_zipcode = schools['ZIPCODE'].value_counts() sns.set() 
    2 sns.barplot(x=school_zipcode.index, y=school_zipcode.get_values())

未完待续~  欢迎大家关注我的公众号,“思享会Club”,获取该内容资源。

Python数据分析实战-Boston Public Schools GEO数据分析-Part1的更多相关文章

  1. Python数据分析实战视频教程【小蚊子数据分析实战课程】

    点击了解更多Python课程>>> Python数据分析实战视频教程[小蚊子数据分析实战课程] [课程概述] Python数据分析实战' 适用人群:适合需提升竞争力.提升工作效率.喜 ...

  2. 万字长文,Python数据分析实战,使用Pandas进行数据分析

    文章目录 很多人学习python,不知道从何学起.很多人学习python,掌握了基本语法过后,不知道在哪里寻找案例上手.很多已经做案例的人,却不知道如何去学习更加高深的知识.那么针对这三类人,我给大家 ...

  3. Python数据分析实战

    Python数据分析实战(高清版)PDF 百度网盘 链接:https://pan.baidu.com/s/1nlHM1IW8MYg3z79TUwIsWg 提取码:ux8t 复制这段内容后打开百度网盘手 ...

  4. 【python数据分析实战】电影票房数据分析(一)数据采集

    目录 1.获取url 2.开始采集 3.存入mysql 本文是爬虫及可视化的练习项目,目标是爬取猫眼票房的全部数据并做可视化分析. 1.获取url 我们先打开猫眼票房http://piaofang.m ...

  5. 【python数据分析实战】电影票房数据分析(二)数据可视化

    目录 图1 每年的月票房走势图 图2 年票房总值.上映影片总数及观影人次 图3 单片总票房及日均票房 图4 单片票房及上映月份关系图 在上一部分<[python数据分析实战]电影票房数据分析(一 ...

  6. 向大家介绍我的新书:《基于股票大数据分析的Python入门实战》

    我在公司里做了一段时间Python数据分析和机器学习的工作后,就尝试着写一本Python数据分析方面的书.正好去年有段时间股票题材比较火,就在清华出版社夏老师指导下构思了这本书.在这段特殊时期内,夏老 ...

  7. 基于股票大数据分析的Python入门实战(视频教学版)的精彩插图汇总

    在我写的这本书,<基于股票大数据分析的Python入门实战(视频教学版)>里,用能吸引人的股票案例,带领大家入门Python的语法,数据分析和机器学习. 京东链接是这个:https://i ...

  8. MySQL数据分析实战-朱元禄-专题视频课程

    MySQL数据分析实战-496人已学习 课程介绍        本套课程由知名数据分析博主jacky老师录制,深入浅出讲解MySQL数据分析,从实战角度出发,帮助大家制胜职场!课程收益    1.学会 ...

  9. 《MySQL数据分析实战》八句箴言前四句解析

    大家好,我是jacky朱元禄,很高兴继续跟大家学习<MySQL数据分析实战>,从本节课程开始,jacky将从SQL语句入手,给大家解析八句箴言: 不管三七二十一,先把数据show来看: 数 ...

随机推荐

  1. 史上最简单的SpringCloud教程 | 第十三篇: 断路器聚合监控(Hystrix Turbine)(Finchley版本)

    转载请标明出处: 原文首发于:https://www.fangzhipeng.com/springcloud/2018/08/30/sc-f13-turbine/ 本文出自方志朋的博客 上一篇文章讲述 ...

  2. Flask—10-项目部署(02)

    项目部署 WEB工作原理 客户端(chrom) <=> WEB服务器(nginx) <=> WSGI(uWSGI) <=> Python(Flask) <=& ...

  3. duplicate symbols for architecture arm64 导入的类库字符重复

    这个错误大部分时候是引用库重复定义的问题. 项目需要,同时引用ZBar和QQ授权登录SDK,由于二者均使用了Base64处理数据,XCode编译时报错: duplicate symbol _base6 ...

  4. iOS之safari调试iOS app web页面

    Overview 当下移动端开发过程中大量使用前段H5.js等等技术,而这些web页面的调试在Xcode控制台中不太明了,经常我们移动app运行了就是方法,但是不能显示响应的效果,这时候或许就是已经报 ...

  5. Linux通过Shell脚本命令修改密码不需要交互

    交互方式修改密码 1. ssh 远程到主机: 2. 切换到root账号: [一般都是切换到root进行密码修改,如果普通用户修改自己的密码,要输入原密码,然后新密码要满足复杂度才OK]: 3. pas ...

  6. Jquery拼图

    Jquery代码 <script> $(function () { $("td").click(function () { var img = $(this).prop ...

  7. docker swarm的应用----docker集群的构建

    一.docker安装 这里我们安装docker-ce 的18.03版本 yum    -y remove docker  删除原有版本 #安装依赖包 [root@Docker ~]# yum -y i ...

  8. 【数据结构】循环链表&&双向链表详解和代码实例

    喜欢的话可以扫码关注我们的公众号哦,更多精彩尽在微信公众号[程序猿声] 01 循环链表 1.1 什么是循环链表? 前面介绍了单链表,相信大家还记得相关的概念.其实循环链表跟单链表也没有差别很多,只是在 ...

  9. 爬取 StackOverFlow 上有关于 Python 的问题

    给定起始页面以及爬取页数,要求得到每一个问题的标题.票数.回答数.查看数 stackflow <- function(page){ url <- "http://stackove ...

  10. java四种访问权限

    java有四种访问权限,它们各自的范围如下图所示 当下列访问修饰符修饰字段和方法时: private 任意位置的子类不可以访问从父类继承的private字段和方法.这里所说的访问包括通过super关键 ...