传送门

Description

\(windy\)定义了一种\(windy\)数。不含前导零且相邻两个数字之差至少为\(2\)的正整数被称为\(windy\)数。\(windy\)想知道,

在\(A\)和\(B\)之间,包括\(A\)和\(B\),总共有多少个\(windy\)数?

Input

包含两个整数,\(A,B\)。

Output

一个整数

Sample Input

25 50

Sample Output

20

Hint

\(For~All:\)

\(1~\leq~A~\leq~B~\leq~2~\times~10^9\)

Solution

数位DP。

数位DP的DP状态一般含有如下参数:

1、从高到低当前填到了第几位。

2、当前这一位的数是几。

3、这一位是否等于一个上界x。一般而言,大于上界没有意义,所以可以用一个二进制表示等于或小于。

4、从最高位到这一位是否全为0

对于具体题目,需要根据要求增删状态。

对于本题而言,可以设\(f_{i,j,0/1,0/1}\)代表从高到低填到了第i位,当前这一位数字是j,否/是等于0,否/是全为0的方案数

考虑\([A,B]\)间的答案就等于小于\(B\)的答案减去小于\(A-1\)的答案。于是可以分别把\(B\)和\(A-1\)作为上界x求得答案相减。

预处理:处理出第一位所有的情况。具体的,设第一位是\(s_1\),则\(f_{1,j,0,0}=1|j<s_1\),\(f_{1,0,0,1}=1\),\(f_{1,s_1,1,0}=1\)

转移方面,这里使用刷表法刷出下一维。具体的,枚举当前是什么状态,枚举下一位的数字是谁。

直接累加小于上界且从小于上界的状态转移的答案,对于等于上界的状态,转移到等于上界的状态。注意区分小于和等于在第3维上的差异。

显然每一位全是前导零的方案数是1。对于本位置全是前导0的方案,可以更新下一位填任意位置小于上界的状态。

最后累加答案为\(ans=(\sum_{j<s_{len}}f_{len,j,0,0})+f_{len,s_{len},1,0}\)。其中len为上界x的位数。

看着发晕的话可以参考代码

Code

#include<cstdio>
#include<cstring>
#define rg register
#define ci const int
#define cl const long long int typedef long long int ll; namespace IO {
char buf[90];
} template<typename T>
inline void qr(T &x) {
char ch=getchar(),lst=' ';
while(ch>'9'||ch<'0') lst=ch,ch=getchar();
while(ch>='0'&&ch<='9') x=(x<<1)+(x<<3)+(ch^48),ch=getchar();
if(lst=='-') x=-x;
} template<typename T>
inline void write(T x,const char aft,const bool pt) {
if(x<0) x=-x,putchar('-');
int top=0;
do {
IO::buf[++top]=x%10+'0';
x/=10;
} while(x);
while(top) putchar(IO::buf[top--]);
if(pt) putchar(aft);
} template<typename T>
inline T mmax(const T a,const T b) {if(a>b) return a;return b;}
template<typename T>
inline T mmin(const T a,const T b) {if(a<b) return a;return b;}
template<typename T>
inline T mabs(const T a) {if(a<0) return -a;return a;} template<typename T>
inline void mswap(T &a,T &b) {
T temp=a;a=b;b=temp;
} const int maxs = 15; ll a,b;
ll frog[maxs][maxs][5][5],st[maxs]; ll dp(ll x); int main() {
qr(a);qr(b);
a=dp(a-1);memset(frog,0,sizeof frog);b=dp(b);
write(b-a,'\n',true);
return 0;
} ll dp(ll x) {
int len=0;
rg ll tx=x;
do {++len;} while(tx/=10);if(!x) len=0; //确定x的位数
for(rg int i=len;i;--i) st[i]=x%10,x/=10; //st[i]即为s数组,存储x每一位的值
for(rg int i=1;i<st[1];++i) frog[1][i][0][0]=1;
frog[1][st[1]][1][0]=frog[1][0][0][1]=1;
/*
*初始化:
*第一位填小于s[1]的数,整个数小于x前1位且无前导0的方案数
*=第一位填s[1]的数,整个数等于x前1位的方案数
*=全部填0的方案数=1
*/
for(rg int i=1;i<len;++i) {
rg int di=i+1; //下一位置
for(rg int j=0;j<10;++j) {
for(rg int k=0;k<10;++k) {
if(mabs(j-k) >= 2) { //如果这一位合法
frog[di][k][0][0]+=frog[i][j][0][0]; //这一位填k的方案数,从上一位的数小于x转移
if(k < st[di]) frog[di][k][0][0]+=frog[i][j][1][0];
//从上一位等于x的数转移到这一位小于x的答案
else if(k == st[di]) frog[di][k][1][0]+=frog[i][j][1][0];
//从上一位等于x的数转移到这一位等于x的答案
}
}
}
frog[di][0][0][1]=1; //下一位全是前导0的方案数为1
for(rg int j=1;j<10;++j) frog[di][j][0][0]+=frog[i][0][0][1];
//由这一位全是前导0可以更新下一位的不取0的所有情况。
}
ll _ans=0;
for(rg int i=0;i<10;++i) _ans+=frog[len][i][0][0];
_ans+=frog[len][st[len]][1][0];
return _ans;
}

Summary

数位dp状态的确定:

1、从高到低当前填到了第几位。

2、当前这一位的数是几。

3、这一位是否等于一个上界x。一般而言,大于上界没有意义,所以可以用一个二进制表示等于或小于。

4、从最高位到这一位是否全为0

转移细节比较多,需要留心

【数位DP】【SCOI2009】windy数的更多相关文章

  1. 数位dp——BZOJ1026 Windy数

    1026: [SCOI2009]windy数 Time Limit: 1 Sec  Memory Limit: 162 MB Description windy定义了一种windy数.不含前导零且相邻 ...

  2. [暑假集训--数位dp]UESTC250 windy数

    windy定义了一种windy数. 不含前导零且相邻两个数字之差至少为22 的正整数被称为windy数. windy想知道,在AA 和BB 之间,包括AA 和BB ,总共有多少个windy数? Inp ...

  3. bzoj 1026 [SCOI2009]windy数 数位dp

    1026: [SCOI2009]windy数 Time Limit: 20 Sec Memory Limit: 256 MB 题目连接 http://www.lydsy.com/JudgeOnline ...

  4. bzoj 1026 [SCOI2009]windy数(数位DP)

    1026: [SCOI2009]windy数 Time Limit: 1 Sec  Memory Limit: 162 MBSubmit: 4550  Solved: 2039[Submit][Sta ...

  5. BZOJ_1026_[SCOI2009]windy数_数位DP

    BZOJ_1026_[SCOI2009]windy数_数位DP 题意:windy定义了一种windy数.不含前导零且相邻两个数字之差至少为2的正整数被称为windy数. windy想知道, 在A和B之 ...

  6. bzoj1026: [SCOI2009]windy数(数位dp)

    1026: [SCOI2009]windy数 Time Limit: 1 Sec  Memory Limit: 162 MBSubmit: 8203  Solved: 3687[Submit][Sta ...

  7. luogu P2657 [SCOI2009]windy数 数位dp 记忆化搜索

    题目链接 luogu P2657 [SCOI2009]windy数 题解 我有了一种所有数位dp都能用记忆话搜索水的错觉 代码 #include<cstdio> #include<a ...

  8. 2018.06.30 BZOJ1026: [SCOI2009]windy数(数位dp)

    1026: [SCOI2009]windy数 Time Limit: 1 Sec Memory Limit: 162 MB Description windy定义了一种windy数.不含前导零且相邻两 ...

  9. 1026: [SCOI2009]windy数(数位dp)

    1026: [SCOI2009]windy数 Time Limit: 1 Sec  Memory Limit: 162 MBSubmit: 9016  Solved: 4085[Submit][Sta ...

  10. bzoj1026: [SCOI2009]windy数(传说你是数位DP)

    1026: [SCOI2009]windy数 题目:传送门 题解: 其实之前年少无知的时候好像A过...表示当时并不知道什么数位DP 今天回来深造一发... 其实如果对这个算法稍有了解...看到这题的 ...

随机推荐

  1. Linux命令应用大词典-第21章 LVM和RAID管理

    21.1 pvcreate:创建物理卷 21.2 pvscan:列出找到的物理卷 21.3 pvdisplay:显示物理卷的相关属性 21.4 vgcreate:创建卷组 21.5 vgscan:查找 ...

  2. 一篇文章让你了解GC垃圾回收器

    简单了解GC垃圾回收器 了解GC之前我们首先要了解GC是要做什么的?顾名思义回收垃圾,什么是垃圾呢? GC回收的垃圾主要指的是回收堆内存中的垃圾对象. 从根对象出发,所有被引用的对象,都是存活对象 其 ...

  3. lintcode172 删除元素

    删除元素   给定一个数组和一个值,在原地删除与值相同的数字,返回新数组的长度. 元素的顺序可以改变,并且对新的数组不会有影响. 您在真实的面试中是否遇到过这个题? Yes 样例 给出一个数组 [0, ...

  4. AngularJS 初探

    AngularJS,诞生于2009年,由Misko Hevery等人创建,后为Google所收购.这是一款优秀的前端JS框架,已经被用于Google的多款产品当中.AngularJS有着诸多特性,最为 ...

  5. LeetCode 144 ——二叉树的前序遍历

    1. 题目 2. 解答 2.1. 递归法 定义一个存放树中数据的向量 data,从根节点开始,如果节点不为空,那么 将当前节点的数值加入到 data 中 递归得到其左子树的数据向量 temp,将 te ...

  6. Mr. Frog’s Game(模拟连连看)

    Description One day, Mr. Frog is playing Link Game (Lian Lian Kan in Chinese). In this game, if you ...

  7. 20145214实验三 敏捷开发与XP实践

    20145214实验三 敏捷开发与XP实践 XP准则 沟通 :XP认为项目成员之间的沟通是项目成功的关键,并把沟通看作项目中间协调与合作的主要推动因素. 简单 :XP假定未来不能可靠地预测,在现在考虑 ...

  8. 由作业题引发对C++引用的一些思考

    首先分析一段代码: #include <bits/c++config.h> #include <ostream> #include <iostream> #incl ...

  9. LintCode-71.二叉树的锯齿形层次遍历

    二叉树的锯齿形层次遍历 给出一棵二叉树,返回其节点值的锯齿形层次遍历(先从左往右,下一层再从右往左,层与层之间交替进行) 样例 给出一棵二叉树 {3,9,20,#,#,15,7}, 返回其锯齿形的层次 ...

  10. 第一章 持续集成jenkins工具使用之部署

    1.1 硬件要求 内存:至少512MB 磁盘空间:10G JDK8 最好同时安装jre 从官网https://jenkins.io/download/下载最新的war包(Generic Java Pa ...