Missile


Time Limit: 2 Seconds      Memory Limit: 65536 KB

You control N missile launching towers. Every tower has enough missiles, but for each tower only one missile can be launch at the same time. Before the launching, every missile need T1 seconds to leave the tower. Assume that all the missiles have the same speed V, and it would fly along the shortest path to the target. You can just consider the horizontal distance and ignore the height. You can consider the time equal to distance / V (minutes). The missile can immediately destroy the target when it reached. Besides, for the same tower, after launching a missile, it need T2 minutes to prepare for the next one.

Now, give you the coordinate position of N missile launching towers and M targets, T1, T2 and V, you should find the minimum minutes to destroy all the targets.

Input

The input will consist of about 10 cases. The first line of each case contains five positive integer numbers N, M, T1, T2 and V, decribed as above. The next M lines contains two integer numbers indicating the coordinate of M targets. The continueing N lines contains two integer numbers indicating the coordinate of N towers.
To all the
cases, 1 ≤ N ≤ 50, 1 ≤ M ≤ 50
The absolute value of all the
coordinates will not exceed 10000, T1,
T2, V will not exceed 2000.

Output

For each case, the output is only one line containing only one real number
with six digits precision (after a decimal point) indicating the minimum minutes
to destroy all the targets.

Sample Input

3 3 30 20 1
0 0
0 50
50 0
50 50
0 1000
1000 0

Sample Output

91.500000

题意:用N个导弹发射塔攻击M个目标。每个导弹发射塔只能同时为一颗导弹服务,发射一颗导弹后需要T1(这里用的是秒)的时间才能离开当前的导弹发射塔,一颗导弹从发射到击中目标的时间与目标到发射塔的距离有关(直线距离),每颗导弹发射完成之后发射塔需要T2的时间准备下一个。现在给出N个导弹发射塔和M个目标的位置坐标以及T1,T2,V,问用这N个导弹发射塔最少需要多少时间可以击毁所有M个目标。

具体实现

一:对每一个导弹发射器,它击中一个目标共有M种情况:分别为在该发射塔第一次发射、第二次发射、第三次发射...一直到第M次发射。因此我们可以把每一个导弹发射塔拆分成M个发射塔,它们与同一个目标的距离是一样的,唯一不同是T1、T2的花销占时不一样。

二:这样的话我们就得到了N*M个点发射器到 M个目标的映射,所表示的关系是当前发射塔击中目标的耗时。

三:设立超级源点0,超级汇点 N * M + M + 1。

四:超级源点到每个发射塔(拆分后的)引一条容量为1的边,每个目标到超级汇点引一条容量为1的边,按若小于当前查询时间的关系(同匹配建边)建边容量为1。

然后跑最大流,判断最大流是否为M。 接着二分查找。

以上解析来自会长大大:http://blog.csdn.net/hpuhjh/article/details/47334625

太弱了  这道题自己建不出来图,

//#include<stdio.h>
//#include<string.h>
//#include<math.h>
//#include<queue>
//#include<stack>
//#include<algorithm>
//#define MAX 110
//#define DD double
//#define INF 0x7fffff
//#define MAXM 500100
//using namespace std;
//struct node
//{
// int from,to,cap,flow,next;
//}edge[MAXM];
//int dis[MAX],vis[MAX];
//int cur[MAX];
//int ans,head[MAX];
//int n,m;
//DD t1,t2,v;
////DD toalx[MAX],toaly[MAX],towrx[MAX],towry[MAX];
//struct record
//{
// DD x,y;
//};
//DD time[3000][MAX];
//DD map[MAX][MAX];
//void init()
//{
// ans=0;
// memset(head,-1,sizeof(head));
//}
//void add(int u,int v,int w)
//{
// edge[ans]={u,v,w,0,head[u]};
// head[u]=ans++;
// edge[ans]={v,u,0,0,head[v]};
// head[v]=ans++;
//}
//DD dist(record a,record b)
//{
// return sqrt((a.x-b.x)*(a.x-b.x)+(a.y-b.y)*(a.y-b.y));
//}
//record towr[MAX];
//record toal[MAX];
//void input()
//{
// int i,j,k;
//
// for(i=1;i<=m;i++)
// scanf("%lf%lf",&toal[i].x,&toal[i].y);
// for(i=1;i<=n;i++)
// scanf("%lf%lf",&towr[i].x,&towr[i].y);
// for(i=1;i<=n;i++)
// for(j=1;j<=m;j++)
// map[i][j]=dist(towr[i],toal[j]);
// for(i=1;i<=n;i++)
// for(k=1;k<=m;k++)
// for(j=1;j<=m;j++)
// time[(i - 1) * m + k][j] = t1 * k + t2 * (k - 1) + map[i][j] / v;
//}
//void getmap(double Max)
//{
// int i,j;
// for(i=1;i<=n*m;i++)
// add(0,i,1);
// for(i=n*m+1;i<=n*m+m;i++)
// add(i,n*m+m+1,1);
// for(i=1;i<=n*m;i++)
// {
// for(j=1;j<=m;j++)
// {
// if(time[i][j]<=Max)
// add(i,j+n*m,1);
// }
// }
//}
//
//
//int bfs(int beg,int end)
//{
// queue<int>q;
// memset(vis,0,sizeof(vis));
// memset(dis,-1,sizeof(dis));
// while(!q.empty()) q.pop();
// vis[beg]=1;
// dis[beg]=0;
// q.push(beg);
// while(!q.empty())
// {
// int u=q.front();
// q.pop();
// for(int i=head[u];i!=-1;i=edge[i].next)
// {
// node E=edge[i];
// if(!vis[E.to]&&E.cap>E.flow)
// {
// dis[E.to]=dis[u]+1;
// vis[E.to]=1;
// if(E.to==end) return 1;
// q.push(E.to);
// }
// }
// }
// return 0;
//}
//int dfs(int x,int a,int end)
//{
// if(x==end||a==0)
// return a;
// int flow=0,f;
// for(int& i=cur[x];i!=-1;i=edge[i].next)
// {
// node& E=edge[i];
// if(dis[E.to]==dis[x]+1&&(f=dfs(E.to,min(a,E.cap-E.flow),end))>0)
// {
// E.flow+=f;
// edge[i^1].flow-=f;
// flow+=f;
// a-=f;
// if(a==0) break;
// }
// }
// return flow;
//}
//int maxflow(int beg,int end)
//{
// int flow=0;
// while(bfs(beg,end))
// {
// memcpy(cur,head,sizeof(head));
// flow+=dfs(beg,INF,end);
// }
// return flow;
//}
//int main()
//{
// int t;
// while(scanf("%d%d%lf%lf%lf",&n,&m,&t1,&t2,&v)!=EOF)
// {
// t1=t1/60;
// input();
// double l=0.0, r =200000000000.0,mid;
// while(r-l>=1e-8)
// {
// mid=(l+r)/2;
// init();
// getmap(mid);
// if(maxflow(0,n*m+m+1)>=m)
// r=mid;
// else
// l=mid;
// }
// printf("%.6lf\n",r);
// }
// return 0;
//} #include <cstdio>
#include <cstring>
#include <algorithm>
#include <queue>
#include <cmath>
#define INF 0x3f3f3f3f
#define maxn 5000
#define maxm 500000
using namespace std; int head[maxn], cur[maxn], cnt;
int dist[maxn], vis[maxn];
struct node
{
int u,v,cap,flow,next;
};
struct NODE
{
double x, y;
};
node edge[maxm];
NODE tower[60];
NODE target[60];
int N, M;
double T1, T2, V;
double map[60][60];
double Time[3000][60];
double change(NODE a, NODE b)
{
return sqrt((a.x - b.x) * (a.x - b.x) + (a.y - b.y) * (a.y - b.y));
}
void init()
{
cnt = 0;
memset(head, -1, sizeof(head));
}
void add(int u, int v, int w){
node E1 = {u, v, w, 0, head[u]};
edge[cnt] = E1;
head[u] = cnt++;
node E2 = {v, u, 0, 0, head[v]};
edge[cnt] = E2;
head[v] = cnt++;
}
void getmap(double max_min)
{
int i, j;
for(i = 1; i <= N * M; ++i)
add(0, i, 1);
for(i = N * M + 1; i <= N * M + M; ++i)
add(i, N * M + M + 1, 1);
for(i = 1; i <= N * M; ++i)
for(j = 1; j <= M; ++j)
if(Time[i][j] <= max_min)//找最小时间建图
add(i, j + N * M, 1);
}
bool BFS(int st, int ed)
{
queue<int>q;
memset(vis, 0, sizeof(vis));
memset(dist, -1, sizeof(dist));
q.push(st);
vis[st] = 1;
dist[st] = 0;
while(!q.empty()){
int u = q.front();
q.pop();
for(int i = head[u]; i != -1; i = edge[i].next){
node E = edge[i];
if(!vis[E.v] && E.cap > E.flow){
vis[E.v] = 1;
dist[E.v] = dist[u] + 1;
if(E.v == ed) return true;
q.push(E.v);
}
}
}
return false;
}
int DFS(int x, int ed, int a)
{
if(a == 0 || x == ed)
return a;
int flow = 0, f;
for(int &i = cur[x]; i != -1; i =edge[i].next)
{
node &E = edge[i];
if(dist[E.v] == dist[x] + 1 && (f = DFS(E.v, ed, min(a, E.cap - E.flow))) > 0){
E.flow += f;
edge[i ^ 1].flow -= f;
flow += f;
a -= f;
if(a == 0) break;
}
}
return flow;
} int maxflow (int st, int ed)
{
int flowsum = 0;
while(BFS(st, ed))
{
memcpy(cur, head, sizeof(head));
flowsum += DFS(st, ed, INF);
}
return flowsum;
}
int main ()
{
while(scanf("%d%d%lf%lf%lf", &N, &M, &T1, &T2, &V) != EOF){
T1 = T1 / 60;//t1给的单位是秒 要转换为分
int i, j, k;
for(j = 1; j <= M; ++j)
scanf("%lf%lf", &target[j].x, &target[j].y);
for(i = 1; i <= N; ++i)
scanf("%lf%lf", &tower[i].x, &tower[i].y);
for(i = 1; i <= N; ++i)
for(j = 1; j <= M; ++j)
map[i][j] = change(tower[i], target[j]);
//map[][]表示第i个塔到j个目标的距离
for(i = 1; i <= N; ++i)
for(k = 1; k <= M; ++k)//k表示的是发射第k个导弹
{
for(j = 1; j <= M; ++j)
Time[(i - 1) * M + k][j] = T1 * k + T2 * (k - 1) + map[i][j] / V;
//Time[][]数组表示从第i个塔依次发射炮弹到每个目标所分别需要的时间
}
double l = 0.0, r = 200000000000.0, mid;
while(r - l >= 1e-8)
{
mid = (l + r) / 2;
init();
getmap(mid);//每次补充建图
if(maxflow(0, N * M + M + 1) >= M)
r = mid;
else
l = mid;
}
printf("%.6lf\n", r);
}
return 0;
}
  

  

zoj 3460 Missile【经典建图&&二分】的更多相关文章

  1. hdoj--5093--Battle ships(二分图经典建图)

    Battle ships Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others) Tot ...

  2. poj--1149--PIGS(最大流经典建图)

    PIGS Time Limit: 1000MS   Memory Limit: 10000KB   64bit IO Format: %I64d & %I64u Submit Status D ...

  3. BZOJ-1822 Frozen Nova 冷冻波 计(jie)算(xi)几何+二分+最大流判定+经典建图

    这道逼题!感受到了数学对我的深深恶意(#‵′).... 1822: [JSOI2010]Frozen Nova 冷冻波 Time Limit: 10 Sec Memory Limit: 64 MB S ...

  4. 【ARC069F】Flags 2-sat+线段树优化建图+二分

    Description ​ 数轴上有 n 个旗子,第 ii 个可以插在坐标 xi或者 yi,最大化两两旗子之间的最小距离. Input ​ 第一行一个整数 N. ​ 接下来 N 行每行两个整数 xi, ...

  5. POJ 2226 最小点覆盖(经典建图)

    Muddy Fields Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 8881   Accepted: 3300 Desc ...

  6. hdu 4185 Oil Skimming(二分图匹配 经典建图+匈牙利模板)

    Problem Description Thanks to a certain "green" resources company, there is a new profitab ...

  7. 2-sat——poj3678经典建图

    比较经典的建图,详见进阶指南 2-sat一般要用到tarjan来求强连通分量 /*2-sat要加的是具有强制关系的边*/ #include<iostream> #include<cs ...

  8. 网络流--最大流--POJ 2139(超级源汇+拆点建图+二分+Floyd)

    Description FJ's cows really hate getting wet so much that the mere thought of getting caught in the ...

  9. hdu4560 不错的建图,二分最大流

    题意: 我是歌手 Time Limit: 6000/2000 MS (Java/Others) Memory Limit: 65535/32768 K (Java/Others) Total Subm ...

随机推荐

  1. UIExtendedEdge

    在IOS7以后 ViewController 开始使用全屏布局的,而且是默认的行为通常涉及到布局.就离不开这个属性 edgesForExtendedLayout,它是一个类型为UIExtendedEd ...

  2. 我的PHP之旅--认识PHP

    PHP是什么? php是一个脚本语言,它运行在服务器端并会以纯文本的形式返回到服务器,它是免费的. php可以对数据库中的数据进行:增删改查,可以对数据进行加密,接收表单. php的文件后缀是.php ...

  3. python机器学习库

    http://scikit-learn.org/stable/install.html

  4. location.hash && location.href

    hash:设置或获取 href 属性中在井号“#”后面的分段. href:设置或获取整个URL为字符串. 通过下面的测试你会发现区别,将代码放到你的HTML中,然后用浏览器打开,测试步骤: 点击“超链 ...

  5. mysql查看'datadir'目录

    mysql查看创建的数据库的数据,包含表等存放的目录,可以输入下面指令查看: show variables like 'datadir'

  6. asp.net控件(1)Repeater

    1. 通过Repeater和数据源创建表格 <AlternatingItemTemplate>属性可以控制单元格交替显示不同的背景颜色 <table width=" sty ...

  7. ANDROID_MARS学习笔记_S02_006_APPWIDGET2_PendingIntent及RemoteViews实现widget绑定点击事件

    一.代码流程 1.ExampleAppWidgetProvider的onUpdate(Context context, AppWidgetManager appWidgetManager, int[] ...

  8. USB (Universal Serial Bus)

    USB歷史簡介 USB規格演變 標準 USB 2.0 介面 實體層 訊號傳輸 傳輸速率 網路層 USB 通訊模型 Endpoints 傳輸型態 USB 資料連結 Transaction Frame P ...

  9. [译]GotW #5:Overriding Virtual Functions

       虚函数是一个很基本的特性,但是它们偶尔会隐藏在很微妙的地方,然后等着你.如果你能回答下面的问题,那么你已经完全了解了它,你不太能浪费太多时间去调试类似下面的问题. Problem JG Ques ...

  10. 屯题50AC纪念

    从2.1起开始屯题,一直弄到现在才完成了一发50题的目标,实在太弱 (当然之间事比较多,还是挺不容易的) 不过总算是完成了一个小的目标了 接下来两周要进行小高考最后冲刺了,所以我大概不会再怎么刷题了 ...