题目大意:

给定两个\((length \leq 10^5)\)的字符串,问第二个串在第一个串中出现了多少次。并且第二个串中含有单字符通配符.

题解:

首先我们从kmp的角度去考虑

这道题从字符串数据结构的方面去考虑你就错了

因为这是我在刷FFT时遇到的题嘛,,直接就去想FFT的做法

我们知道,两个字符串相等当且仅当

\[(\sum_{i=1}^n(s1[i] - s2[i])^2*[s2[i] \neq ?]) = 0
\]

注:可以将s1理解为从第一个串中取出的一个后缀

那么我们对每个s1中的下标就套用公式计算一下即可

我们肯定不能直接计算...

设\(f(x) = \sum_{i=1}^n(s1[o] - s2[i])^2*[s2[i] \neq ?])\)

我们有

\[f(x) = \sum_{i=1}^n(s1[i] - s2[i])^2*[s2[i] \neq ?])
\]

\[f(x) = \sum_{i=1}^ns1[i]^2*s2[i] - \sum{i=1}^n2*s1[i]*s2[i]^2+\sum_{i=1}^ns2[i]^3
\]

针对最后一项求和我们直接预处理即可

有些麻烦的就是前面的两项

但是我们有FFT啊,FFT的作用是计算卷积,可是这明明不是卷积啊?

转化成卷积不就行了。。

我们反转s2这个字符串

然后我们发现,此时有

\[f(x) = \sum_{i=1}^ns1[i]^2*s2[n-i+1] - \sum{i=1}^n2*s1[j]*s2[n-1+1]^2+\sum_{i=1}^ns2[i]^3
\]

前两项变成了标准的卷积形式,所以我们用FFT加速可以在\(nlogn\)内计算

总时间复杂度\(O(nlogn)\)

#include <cmath>
#include <cstdio>
#include <cstring>
#include <algorithm>
using namespace std;
typedef long long ll;
inline void read(int &x){
x=0;char ch;bool flag = false;
while(ch=getchar(),ch<'!');if(ch == '-') ch=getchar(),flag = true;
while(x=10*x+ch-'0',ch=getchar(),ch>'!');if(flag) x=-x;
}
inline int cat_max(const int &a,const int &b){return a>b ? a:b;}
inline int cat_min(const int &a,const int &b){return a<b ? a:b;}
const int maxn = 210010;
const double pi = acos(-1);
const double eps = 1e-8;
struct complex{
double x,y;
complex(){}
complex(double a,double b){x=a;y=b;}
complex operator + (complex rhs){return complex(x+rhs.x,y+rhs.y);}
complex operator - (complex rhs){return complex(x-rhs.x,y-rhs.y);}
complex operator * (complex rhs){return complex(x*rhs.x-y*rhs.y,x*rhs.y+y*rhs.x);}
complex operator / (double rhs){return complex(x/rhs,y/rhs);}
};
complex a[maxn<<1],b[maxn<<1],c[maxn<<1];
void FFT(complex *x,int n,int p){
for(int i=0,t=0;i<n;++i){
if(i > t) swap(x[i],x[t]);
for(int j = n>>1;(t^=j) < j;j >>= 1);
}
for(int m=2;m<=n;m<<=1){
complex wn(cos(p*2*pi/m),sin(p*2*pi/m));
for(int i=0;i<n;i+=m){
complex w(1,0),u;
int k = m>>1;
for(int j=0;j<k;++j,w=w*wn){
u = x[i+j+k]*w;
x[i+j+k] = x[i+j] - u;
x[i+j] = x[i+j] + u;
}
}
}
if(p == -1) for(int i=0;i<n;++i) x[i] = x[i]/n;
}
char tmp[maxn];
int s1[maxn],s2[maxn];
int main(){
scanf("%s",tmp);int n = strlen(tmp);
for(int i=0;i<n;++i) s1[i] = tmp[i] - 'a' + 1;
scanf("%s",tmp);int m = strlen(tmp);
double sum = 0.0;
for(int i=0;i<m;++i){
s2[m-i-1] = tmp[i] == '?' ? 0 : tmp[i] - 'a' + 1;
sum += s2[m-i-1]*s2[m-i-1]*s2[m-i-1];
} int len = 0;
for(int i=1;(i>>2)<n;i<<=1) len = i;
for(int i=0;i<n;++i) a[i] = complex(s1[i]*s1[i],0);
for(int i=0;i<m;++i) b[i] = complex(s2[i],0);
FFT(a,len,1);FFT(b,len,1);
for(int i=0;i<len;++i) c[i] = a[i]*b[i];
memset(a,0,sizeof a);memset(b,0,sizeof b);
for(int i=0;i<n;++i) a[i] = complex(s1[i],0);
for(int i=0;i<m;++i) b[i] = complex(s2[i]*s2[i],0);
FFT(a,len,1);FFT(b,len,1);
for(int i=0;i<len;++i) c[i] = c[i] - (a[i]*b[i]) - (a[i]*b[i]);
FFT(c,len,-1);
int ans = 0;
for(int i=m-1;i<n;++i)
if( (int)(c[i].x + sum + 0.5) == 0 ) ++ans;
printf("%d\n",ans);
for(int i=m-1;i<n;++i)
if( (int)(c[i].x + sum + 0.5) == 0 ) printf("%d\n",i-m+1);
getchar();getchar();
return 0;
}

bzoj 4503 两个串 快速傅里叶变换FFT的更多相关文章

  1. bzoj 4503: 两个串【脑洞+FFT】

    真实脑洞题 因为通配符所以导致t串实际有指数级别个,任何字符串相关算法都没有用 考虑一个新的匹配方法:设a串(模板串)长为n,从m串的i位置开始匹配:\( \sum_{i=0}^{n-1}(a[j]- ...

  2. BZOJ 4503: 两个串 [FFT]

    4503: 两个串 题意:兔子们在玩两个串的游戏.给定两个只含小写字母的字符串S和T,兔子们想知道T在S中出现了几次, 分别在哪些位置出现.注意T中可能有"?"字符,这个字符可以匹 ...

  3. bzoj 4503 两个串

    Description 兔子们在玩两个串的游戏.给定两个字符串S和T,兔子们想知道T在S中出现了几次, 分别在哪些位置出现.注意T中可能有“?”字符,这个字符可以匹配任何字符. Input 两行两个字 ...

  4. 【刷题】BZOJ 4503 两个串

    Description 兔子们在玩两个串的游戏.给定两个字符串S和T,兔子们想知道T在S中出现了几次, 分别在哪些位置出现.注意T中可能有"?"字符,这个字符可以匹配任何字符. I ...

  5. BZOJ 4503 两个串(FFT)

    [题目链接] http://www.lydsy.com/JudgeOnline/problem.php?id=4503 [题目大意] 给出S串和T串,计算T在S中出现次数,T中有通配符'?'. [题解 ...

  6. BZOJ.4503.两个串(FFT/bitset)

    题目链接 \(Description\) 给定两个字符串S和T,求T在S中出现了几次,以及分别在哪些位置出现.T中可能有'?'字符,这个字符可以匹配任何字符. \(|S|,|T|\leq 10^5\) ...

  7. bzoj 4503 两个串——FFT

    题目:https://www.lydsy.com/JudgeOnline/problem.php?id=4503 翻转T,就变成卷积.要想想怎么判断. 因为卷积是乘积求和,又想到相等的话相减为0,所以 ...

  8. bzoj 4503 两个串 —— FFT

    题目:https://www.lydsy.com/JudgeOnline/problem.php?id=4503 推式子即可: 不知怎的调了那么久,应该是很清晰的. 代码如下: #include< ...

  9. BZOJ 4503 两个串 ——FFT

    [题目分析] 定义两个字符之间的距离为 (ai-bi)^2*ai*bi 如果能够匹配,从i到i+m的位置的和一定为0 但这和暴力没有什么区别. 发现把b字符串反过来就可以卷积用FFT了. 听说KMP+ ...

随机推荐

  1. grunt前端打包——css篇

    [导读] 前端打包的工具有很多,我用的习惯的就是这个grunt,无论是你要在github上做开源,还是让自己的项目变得更易于维护,grunt都是首选. 前端打包的工具有很多,我用的习惯的就是这个gru ...

  2. andorid中发送短信页面以及邮件发送

    跳转到发送短信页面 Uri smsToUri = Uri.parse("smsto://10086"); Intent mIntent = new Intent( android. ...

  3. 删除rabbitmq的队列和队列中的数据

      访问http://{rabbitmq安装IP}:15672,帐号guest,密码guest(也可以使用自己创建的帐号). 登录后访问http://{rabbitmq安装IP}:15672/#/qu ...

  4. Python学习总结之二 -- 数据类型

    带你走进数据类型 一:整数.浮点数 Python中整数和浮点数的定义以及运算和C++都是一样的,我在这里就不需多说了,我就说明一点:Python相对于C/C++而言,定义整数没有int 和 long ...

  5. mfc 小程序---在系统菜单中添加菜单项

    1建立一个对话框工程:在dlg类里定义一个菜单指针m_pMenu,在对话框OnInitDialog函数里添加代码: m_pMenu=GetSystemMenu(FALSE);//获取系统菜单的指针 m ...

  6. Devexpress Spreadsheet 中文教程

    http://blog.csdn.net/hotmee/article/details/50554381

  7. 宇视摄像机RTSP地址格式规则

    rtsp://{用户名}:{密码}@{ip}:{port}/video1/2/3,分别对应主/辅/三码流: 比如: rtsp://admin:admin@192.168.8.8:554/video1, ...

  8. EasyPlayerPro(Windows)流媒体播放器开发之跨语言调用

    下面我们来讲解一下关于EasyPlayerPro接口的调用,主要分为C++和C#两种语言,C++也可以基于VC和QT进行开发,C++以VC MFC框架为例进行讲解,C#以Winform框架为例进行讲解 ...

  9. linux自动ftp上传与下载文件的简单脚本

    #!/bin/sh cd /data/backup/55mysql DATE=`date +'%Y%m%d'`file="55_mysql_"$DATE"03*.rar& ...

  10. framemarker的使用

    1 什么是framemarker framemarker是网页模版和数据模型的结合体.装载网页的时候,framemarker自动从数据模型中提取数据并生成html页面. 2 framemarker怎么 ...