折线统计(line)
折线统计(line)
题目描述
二维平面上有n个点(xi, yi),现在这些点中取若干点构成一个集合S,对它们按照x坐标排序,顺次连接,将会构成一些连续上升、下降的折线,设其数量为f(S)。如下图中,1->2,2->3,3->5,5->6(数字为下图中从左到右的点编号),将折线分为了4部分,每部分连续上升、下降。
现给定k,求满足f(S) = k的S集合个数。
输入
第一行两个整数n和k,以下n行每行两个数(xi, yi)表示第i个点的坐标。所有点的坐标值都在[1, 100000]内,且不存在两个点,x坐标值相等或y坐标值相等。
输出
输出满足要求的方案总数 mod 100007的结果。
solution
令f[i][j][0/1]表示前i个点,连成j段线,最后一段上升\下降的方案数
由于每次取的是一段连续的y,可以用树状数组优化
#include<cstdio>
#include<iostream>
#include<cstdlib>
#include<cstring>
#include<algorithm>
#include<cmath>
#define mod 100007
using namespace std;
int n,k,tree[100005][11][2],f[50005][11][2],Max,ans;
struct node{
int x,y;
}s[50005];
bool cmp(const node &a,const node &b){
return a.x<b.x;
}
void jia(int i,int j,int p,int v){
for(;i<=Max;i+=i&-i)tree[i][j][p]=(tree[i][j][p]+v)%mod;
}
int ask(int i,int j,int p){
int sum=0;
for(;i;i-=i&-i)sum=(sum+tree[i][j][p])%mod;
return sum;
}
int main()
{
cin>>n>>k;
for(int i=1;i<=n;i++){
scanf("%d%d",&s[i].x,&s[i].y);
Max=max(Max,s[i].y);
}
Max++;
sort(s+1,s+n+1,cmp);
for(int i=1;i<=n;i++){
f[i][0][0]=f[i][0][1]=1;
for(int j=1;j<=k;j++){
f[i][j][0]=(ask(s[i].y,j,0)+ask(s[i].y,j-1,1))%mod;
f[i][j][1]=(ask(Max,j,1)-ask(s[i].y,j,1))%mod+(ask(Max,j-1,0)-ask(s[i].y,j-1,0))%mod;
f[i][j][1]%=mod;
}
ans=(ans+f[i][k][0]+f[i][k][1])%mod;
for(int j=0;j<=k;j++){
jia(s[i].y,j,0,f[i][j][0]);jia(s[i].y,j,1,f[i][j][1]);
}
}
ans=(ans%mod+mod)%mod;
cout<<ans<<endl;
return 0;
}
折线统计(line)的更多相关文章
- BZOJ3688: 折线统计
题解: 令f[i][j][0/1]表示前i个数有j段,最后一段是下降/上升的方案数 很容易列出状态转移方程(已按x轴排序) f[i][j][0]=sigma(f[k][j][0]+f[k][j-1][ ...
- 【ybt金牌导航1-2-3】折线统计
折线统计 题目链接:ybt金牌导航1-2-3 题目大意 在一个图上有一些点,保证任意两个点的横纵坐标都不相同. 要你选一些集合,按 x 坐标排序依次连接,会构成一些连续上升下降的折线,问你折线数量是 ...
- [FJSC2014]折线统计
[题目描述] 二维平面上有n 个点(xi, yi),现在这些点中取若干点构成一个集合S,对它们按照x 坐标排序,顺次连接,将会构成一些连续上升.下降的折线,设其数量为f(S).如下图中,1->2 ...
- echarts 折线统计笔记
效果案例图 需要引入的js文件可以直接去官网下载 下面是代码 <!--第一步: 引入 ECharts 文件 --> <script src="static/js/myjs/ ...
- [BZOJ2688]折线统计
Description 二维平面上有n个点(xi, yi),现在这些点中取若干点构成一个集合S,对它们按照x坐标排序,顺次连接,将会构成一些连续上升.下降的折线,设其数量为f(S).如下图中,1-&g ...
- BZOJ3688 折线统计【树状数组优化DP】
Description 二维平面上有n个点(xi, yi),现在这些点中取若干点构成一个集合S,对它们按照x坐标排序,顺次连接,将会构成一些连续上升.下降的折线,设其数量为f(S).如下图中,1-&g ...
- 题解 bzoj3688【折线统计】
考虑 \(dp\) . 首先把所有节点按 \(x\) 从小到大排序是很有必要的. 记 f[i][j][0] 表示满足以第 \(i\) 个节点做折线结尾,选取的点集 \(S\) 满足 \(f(S)=j\ ...
- Vue整合d3.v5.js制作--折线图(line)
先上效果图(x轴固定为时间轴): 图中出现的悬浮框是鼠标悬停效果 1.环境说明: vue版本:"vue": "^2.5.2" d3版本:"d3&quo ...
- 2018.09.28 bzoj3688: 折线统计(dp+树状数组)
传送门 简单树状数组优化dp. 注意到k很小提示我们搜(d)(d)(d)索(p)(p)(p). 先按第一维排序. 用f[i][j][0/1]f[i][j][0/1]f[i][j][0/1]表示第i个点 ...
随机推荐
- 基础I/O
基础IO: c库文件IO操作接口:(详细查看c语言中的文件操作函数总结:https://www.cnblogs.com/cuckoo-/p/10560640.html) fopen 打开文件 fclo ...
- Oracle小知识_长期总结
更新时间:2018年7月16日 11:22:28 一. 系统 1. 打开防火墙后 Oracle 无法链接 新建1521端口规则. 二.知识 A. 序列 1. nextval ------------- ...
- 网络编程——TCP协议和通信
第1章 TCP通信 TCP通信同UDP通信一样,都能实现两台计算机之间的通信,通信的两端都需要创建socket对象. 区别在于,UDP中只有发送端和接收端,不区分客户端与服务器端,计算机之间可以任意地 ...
- css3媒体查询中device-width和width的区别
1.device-width 定义:定义输出设备的屏幕可见宽度. 不管你的网页是在safari打开还是嵌在某个webview中,device-width都只跟你的设备有关,如果是同一个设备,那么他的值 ...
- Vue之Vue-touch的使用
最近项目中,有的页面发现设置返回键看起来怪怪的,感觉与整体不协调,于是就考虑使用手势滑动事件来实现返回功能~ 开叉查阅资料~找到了vue-touch,使用起来可谓是简单粗暴啊,适合我这样的快速开发人员 ...
- 第五篇:selenium调用IE问题(Protected Mode settings are not the same for all zones)
代码信息: driver = webdriver.Ie()driver.get('http://www.baidu.com') 问题描述: raise exception_class(message, ...
- 50 道 CSS 基础面试题及答案
1 介绍一下标准的CSS的盒子模型?与低版本IE的盒子模型有什么不同的? 标准盒子模型:宽度=内容的宽度(content)+ border + padding + margin 低版本IE盒子模型:宽 ...
- Python3爬取人人网(校内网)个人照片及朋友照片,并一键下载到本地~~~附源代码
题记: 11月14日早晨8点,人人网发布公告,宣布人人公司将人人网社交平台业务相关资产以2000万美元的现金加4000万美元的股票对价出售予北京多牛传媒,自此,人人公司将专注于境内的二手车业务和在美国 ...
- Tempter of the Bone HDU - 1010(dfs)
Tempter of the Bone Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Othe ...
- HDU - 6514 Monitor(二维差分)
题意 给定一个\(n×m\)的矩阵.(\(n×m <= 1e7\)). \(p\)次操作,每次可以在这个矩阵中覆盖一个矩形. \(q\)次询问,每次问一个矩形区域中,是否所有的点都被覆盖. 解析 ...