题意:

在二维平面的第一象限有\(n(1 \leq n \leq 10^5)\)条平行于\(x\)轴的线段,接下来有\(m\)次射击\(x \, a \, b \, c\)。

每次射击会获得一定的分数,假设上一轮的分数为\(pre\),那么这次射击就会在位置\(x\)处射击最近的\(K=(a \cdot pre + b) % c\)个靶子。

每射中一个靶子就会获得靶子到\(x\)轴距离的分数,如果上一轮分数\(pre > P\),那么本轮分数再乘\(2\)。

输出每次射击所得的分数。

分析:

首先从左到右扫描线段:

  • 遇到线段的左端点,在这个线的位置射穿过去的话,靶的个数增加\(1\),而且也会比原来得到对应的分数
  • 遇到线段的右端点,在这个线的位置射穿过去的话,靶的个数减少\(1\),而且也会比原来得到对应的分数

所以\(n\)条线段就有\(2n\)个事件,从左往右扫描,维护\(2n\)棵线段树,对应前\(i\)个事件发生后对应的靶子的个数以及到\(x\)轴距离之和。

然后每次计算出\(K\),接下来就是求树中前\(K\)小个数字之和,这是主席树的拿手本领。

在\(x\)处射击,要找到对应的那棵线段树,具体来说就是:

位置小于\(x\)的事件已经发生了,位置等于\(x\)的左端点事件也发生了,其他的事件都还没发生。

对于位置相同的事件,我们可以把左端点事件排序在右端点事件前面,这样就可以二分查找到对应的线段树。

最后在这棵线段树里查询答案。

\(Tips\):在计算\(K\)的过程注意取余,否则可能会溢出。

#include <cstdio>
#include <cstring>
#include <algorithm>
using namespace std; typedef long long LL;
const int maxn = 100000 + 10;
const int INF = 0x3f3f3f3f;
const int maxnode = maxn << 5; struct Event
{
int pos, sum, type;
bool operator < (const Event& t) const {
return pos < t.pos || (pos == t.pos && type < t.type);
}
}; struct Segment
{
int l, r, d;
}; Event events[maxn * 2];
Segment a[maxn];
int y[maxn], tot; int n, m, X;
LL P; int sz;
int cnt[maxnode], lch[maxnode], rch[maxnode];
LL sum[maxnode];
int root[maxn * 2]; int update(int pre, int L, int R, int pos, LL val, int type) {
int rt = ++sz;
lch[rt] = lch[pre];
rch[rt] = rch[pre];
cnt[rt] = cnt[pre] + type;
sum[rt] = sum[pre] + val;
if(L < R) {
int M = (L + R) / 2;
if(pos <= M) lch[rt] = update(lch[pre], L, M, pos, val, type);
else rch[rt] = update(rch[pre], M+1, R, pos, val, type);
}
return rt;
} LL query(int rt, int L, int R, int k) {
if(L == R) {
if(cnt[rt] > k) return sum[rt] / cnt[rt] * k;
else return sum[rt];
}
int M = (L + R) / 2;
int num = cnt[lch[rt]];
if(num >= k) return query(lch[rt], L, M, k);
else return sum[lch[rt]] + query(rch[rt], M+1, R, k - num);
} int main()
{
while(scanf("%d%d%d%lld", &n, &m, &X, &P) == 4) {
for(int i = 0; i < n; i++) {
scanf("%d%d%d", &a[i].l, &a[i].r, &a[i].d);
events[i * 2] = (Event){ a[i].l, a[i].d, 1 };
events[i*2+1] = (Event){ a[i].r + 1, a[i].d, -1 };
y[i] = a[i].d;
}
sort(events, events + n * 2);
sort(y, y + n);
tot = unique(y, y + n) - y; sz = 0;
for(int i = 0; i < n * 2; i++) {
Event& e = events[i];
int pos = lower_bound(y, y + tot, e.sum) - y + 1;
root[i + 1] = update(root[i], 1, tot, pos, e.sum * e.type, e.type);
} LL pre = 1;
while(m--) {
int x; LL a, b, c;
scanf("%d%lld%lld%lld", &x, &a, &b, &c);
int K = (a * pre + b) % c;
if(!K) { printf("0\n"); pre = 0; continue; }
Event t;
t = (Event){ x, 0, 2 };
int rt = lower_bound(events, events + n * 2, t) - events;
LL ans;
if(K >= cnt[root[rt]]) ans = sum[root[rt]];
else ans = query(root[rt], 1, tot, K);
if(pre > P) ans <<= 1;
pre = ans;
printf("%lld\n", ans);
}
} return 0;
}

HDU 4866 Shooting 扫描线 + 主席树的更多相关文章

  1. HDU 4866 Shooting (主席树)

    题目链接  HDU 4866 题意  给定$n$条线段.每条线段平行$x$轴,离x轴的距离为$D$,覆盖的坐标范围为$[L, R]$.   现在有$m$次射击行动,每一次的射击行动可以描述为在横坐标$ ...

  2. HDU 4866 Shooting(主席树)题解

    题意:在一个射击游戏里面,游戏者可以选择地面上[1,X]的一个点射击,并且可以在这个点垂直向上射击最近的K个目标,每个目标有一个价值,价值等于它到地面的距离.游戏中有N个目标,每个目标从L覆盖到R,距 ...

  3. HDU 4866 Shooting(持久化线段树)

    view code//第二道持久化线段树,照着别人的代码慢慢敲,还是有点不理解 #include <iostream> #include <cstdio> #include & ...

  4. HDU 4866 Shooting 题解:主席树

    这题的主要的坑点就是他给你的射击目标有重合的部分,如果你向这些重合的部分射击的话要考虑两种情况: 射击目标数量 ≥ 重合数量 : 全加上 射击目标数量 ≤ 重合数量 : 只加距离*射击目标数量 然而这 ...

  5. hdu 2665 Kth number 主席树

    Kth number Time Limit: 15000/5000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others) Prob ...

  6. HDU 5919 Sequence II 主席树

    Sequence II Problem Description   Mr. Frog has an integer sequence of length n, which can be denoted ...

  7. HDU 4417 Super Mario 主席树

    分析:找一个区间里小于等于h的数量,然后这个题先离散化一下,很简单 然后我写这个题主要是熟悉一下主席树,其实这个题完全可以离线做,很简单 但是学了主席树以后,我发现,在线做,一样简单,而且不需要思考 ...

  8. hdu 5919--Sequence II(主席树--求区间不同数个数+区间第k大)

    题目链接 Problem Description Mr. Frog has an integer sequence of length n, which can be denoted as a1,a2 ...

  9. HDU - 2665 Kth number 主席树/可持久化权值线段树

    题意 给一个数列,一些询问,问$[l,r]$中第$K$大的元素是哪一个 题解: 写法很多,主席树是最常用的一种之一 除此之外有:划分树,莫队分块,平衡树等 主席树的定义其实挺模糊, 一般认为就是可持久 ...

随机推荐

  1. java http的get,post请求

    初学可用F12查看任意网页帮助理解 package httpTest: import java.io.BufferedReader; import java.io.IOException;import ...

  2. CF713C Sonya and Problem Wihtout a Legend & hihocoder1942 单调序列

    这两个题是一样的,不过数据范围不同. 思路1: 在CF713C中,首先考虑使生成序列单调不下降的情况如何求解.因为单调上升的情况可以通过预处理将a[i]减去i转化成单调不下降的情况. 首先,生成的序列 ...

  3. JavaScprit30-6 学习笔记

    今天学习的是  仿即时搜索诗句效果 第一个问题: fetch() Fetch API  提供了一个 JavaScript接口,用于访问和操纵HTTP管道的部分,例如请求和响应.它还提供了一个全局 fe ...

  4. 【extjs6学习笔记】0.1 准备:基础概念(02)

    Ext 类 Ext 是一个全局单例的对象,在 Sencha library 中它封装了所有的类和许多实用的方法.许多常用的函数都定义在 Ext 对象里.它还提供了像其他类中一些频繁使用的方法的快速调用 ...

  5. 基于FPGA的DDS任意波形发生器设计

    一.简介       DDS技术最初是作为频率合成技术提出的,由于其易于控制,相位连续,输出频率稳定度高,分辨率高, 频率转换速度快等优点,现在被广泛应用于任意波形发生器(AWG).基于DDS技术的任 ...

  6. (转)在SQL Server 2016,Visual Studio 2017环境下,连接数据库屡屡失败,在connectionString上出的问题

    适用情景: 1,ServerVersion出了问题,“SqlCnt.ServerVersion”引发了类型“System.InvalidOperationException”的异常 2,在String ...

  7. 新萝卜家园GHOST WIN7系统32,64位官方版下载

    来自系统妈:http://www.xitongma.com 新萝卜家园GHOST win7系统64位官方经典版 V2016年3月 系统概述 新萝卜家园ghost win7系统64位官方经典版加快“网上 ...

  8. SAP C4C Opportunity和SAP ERP Sales流程的集成

    首先在C4C里创建一个新的Opportunity: 给这个Opportunity添加一个新的产品: 点按钮:Request Pricing, 从ERP抓取pricing数据,点按钮之前Negotiat ...

  9. 【转载】Cesium基础使用介绍

    既然给我发了参与方式,不参加似乎有点不给人面子,反正也没多少人看我的博客,那我就试试吧,也欢迎大家自己参与:2017年度全网原创IT博主评选活动投票:http://www.itbang.me/goVo ...

  10. 卓越管理的秘密(Behind Closed Doors)

    或许提到本书甚至本书的作者Johanna Rothman我们会感到些许陌生,那么提起她的另一本获得素有软件界奥斯卡之称的Jolt生产效率大奖的名著<项目管理修炼之道>,会不会惊讶的发现,原 ...