题意:

在二维平面的第一象限有\(n(1 \leq n \leq 10^5)\)条平行于\(x\)轴的线段,接下来有\(m\)次射击\(x \, a \, b \, c\)。

每次射击会获得一定的分数,假设上一轮的分数为\(pre\),那么这次射击就会在位置\(x\)处射击最近的\(K=(a \cdot pre + b) % c\)个靶子。

每射中一个靶子就会获得靶子到\(x\)轴距离的分数,如果上一轮分数\(pre > P\),那么本轮分数再乘\(2\)。

输出每次射击所得的分数。

分析:

首先从左到右扫描线段:

  • 遇到线段的左端点,在这个线的位置射穿过去的话,靶的个数增加\(1\),而且也会比原来得到对应的分数
  • 遇到线段的右端点,在这个线的位置射穿过去的话,靶的个数减少\(1\),而且也会比原来得到对应的分数

所以\(n\)条线段就有\(2n\)个事件,从左往右扫描,维护\(2n\)棵线段树,对应前\(i\)个事件发生后对应的靶子的个数以及到\(x\)轴距离之和。

然后每次计算出\(K\),接下来就是求树中前\(K\)小个数字之和,这是主席树的拿手本领。

在\(x\)处射击,要找到对应的那棵线段树,具体来说就是:

位置小于\(x\)的事件已经发生了,位置等于\(x\)的左端点事件也发生了,其他的事件都还没发生。

对于位置相同的事件,我们可以把左端点事件排序在右端点事件前面,这样就可以二分查找到对应的线段树。

最后在这棵线段树里查询答案。

\(Tips\):在计算\(K\)的过程注意取余,否则可能会溢出。

#include <cstdio>
#include <cstring>
#include <algorithm>
using namespace std; typedef long long LL;
const int maxn = 100000 + 10;
const int INF = 0x3f3f3f3f;
const int maxnode = maxn << 5; struct Event
{
int pos, sum, type;
bool operator < (const Event& t) const {
return pos < t.pos || (pos == t.pos && type < t.type);
}
}; struct Segment
{
int l, r, d;
}; Event events[maxn * 2];
Segment a[maxn];
int y[maxn], tot; int n, m, X;
LL P; int sz;
int cnt[maxnode], lch[maxnode], rch[maxnode];
LL sum[maxnode];
int root[maxn * 2]; int update(int pre, int L, int R, int pos, LL val, int type) {
int rt = ++sz;
lch[rt] = lch[pre];
rch[rt] = rch[pre];
cnt[rt] = cnt[pre] + type;
sum[rt] = sum[pre] + val;
if(L < R) {
int M = (L + R) / 2;
if(pos <= M) lch[rt] = update(lch[pre], L, M, pos, val, type);
else rch[rt] = update(rch[pre], M+1, R, pos, val, type);
}
return rt;
} LL query(int rt, int L, int R, int k) {
if(L == R) {
if(cnt[rt] > k) return sum[rt] / cnt[rt] * k;
else return sum[rt];
}
int M = (L + R) / 2;
int num = cnt[lch[rt]];
if(num >= k) return query(lch[rt], L, M, k);
else return sum[lch[rt]] + query(rch[rt], M+1, R, k - num);
} int main()
{
while(scanf("%d%d%d%lld", &n, &m, &X, &P) == 4) {
for(int i = 0; i < n; i++) {
scanf("%d%d%d", &a[i].l, &a[i].r, &a[i].d);
events[i * 2] = (Event){ a[i].l, a[i].d, 1 };
events[i*2+1] = (Event){ a[i].r + 1, a[i].d, -1 };
y[i] = a[i].d;
}
sort(events, events + n * 2);
sort(y, y + n);
tot = unique(y, y + n) - y; sz = 0;
for(int i = 0; i < n * 2; i++) {
Event& e = events[i];
int pos = lower_bound(y, y + tot, e.sum) - y + 1;
root[i + 1] = update(root[i], 1, tot, pos, e.sum * e.type, e.type);
} LL pre = 1;
while(m--) {
int x; LL a, b, c;
scanf("%d%lld%lld%lld", &x, &a, &b, &c);
int K = (a * pre + b) % c;
if(!K) { printf("0\n"); pre = 0; continue; }
Event t;
t = (Event){ x, 0, 2 };
int rt = lower_bound(events, events + n * 2, t) - events;
LL ans;
if(K >= cnt[root[rt]]) ans = sum[root[rt]];
else ans = query(root[rt], 1, tot, K);
if(pre > P) ans <<= 1;
pre = ans;
printf("%lld\n", ans);
}
} return 0;
}

HDU 4866 Shooting 扫描线 + 主席树的更多相关文章

  1. HDU 4866 Shooting (主席树)

    题目链接  HDU 4866 题意  给定$n$条线段.每条线段平行$x$轴,离x轴的距离为$D$,覆盖的坐标范围为$[L, R]$.   现在有$m$次射击行动,每一次的射击行动可以描述为在横坐标$ ...

  2. HDU 4866 Shooting(主席树)题解

    题意:在一个射击游戏里面,游戏者可以选择地面上[1,X]的一个点射击,并且可以在这个点垂直向上射击最近的K个目标,每个目标有一个价值,价值等于它到地面的距离.游戏中有N个目标,每个目标从L覆盖到R,距 ...

  3. HDU 4866 Shooting(持久化线段树)

    view code//第二道持久化线段树,照着别人的代码慢慢敲,还是有点不理解 #include <iostream> #include <cstdio> #include & ...

  4. HDU 4866 Shooting 题解:主席树

    这题的主要的坑点就是他给你的射击目标有重合的部分,如果你向这些重合的部分射击的话要考虑两种情况: 射击目标数量 ≥ 重合数量 : 全加上 射击目标数量 ≤ 重合数量 : 只加距离*射击目标数量 然而这 ...

  5. hdu 2665 Kth number 主席树

    Kth number Time Limit: 15000/5000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others) Prob ...

  6. HDU 5919 Sequence II 主席树

    Sequence II Problem Description   Mr. Frog has an integer sequence of length n, which can be denoted ...

  7. HDU 4417 Super Mario 主席树

    分析:找一个区间里小于等于h的数量,然后这个题先离散化一下,很简单 然后我写这个题主要是熟悉一下主席树,其实这个题完全可以离线做,很简单 但是学了主席树以后,我发现,在线做,一样简单,而且不需要思考 ...

  8. hdu 5919--Sequence II(主席树--求区间不同数个数+区间第k大)

    题目链接 Problem Description Mr. Frog has an integer sequence of length n, which can be denoted as a1,a2 ...

  9. HDU - 2665 Kth number 主席树/可持久化权值线段树

    题意 给一个数列,一些询问,问$[l,r]$中第$K$大的元素是哪一个 题解: 写法很多,主席树是最常用的一种之一 除此之外有:划分树,莫队分块,平衡树等 主席树的定义其实挺模糊, 一般认为就是可持久 ...

随机推荐

  1. MVC View与Controller分离

    新建了一个 Separate 解决方案, 如下图 Separate.UI    UI层. 引用 Separate.Home Separate.Home 把Home控制器分享到 一个类库中 并引用(Sy ...

  2. MyBatis学习总结(三)---映射文件及引入方式

    MyBatis的强大,主要原于它强大映射功能,相对其它的jdbc,使用MyBatis,你会发现省掉很多代码.上一篇已经简单做出一个实例.今天就了解一下MyBatis的映射xml文件. 了解上一篇fri ...

  3. linux 安装jdk (二进制文件安装)

    1.下载jdk 此处以1.7 为例 :jdk-7u79-linux-x64.tar.gz 2.通过ssh将安装介质传到服务器 我一般放在 /opt 目录下 3.用tar 命令解压缩   tar -zx ...

  4. Kendo UI Validator 概述

    Kendo UI Validator 概述 Kendo UI Validator 支持了客戶端校驗的便捷方法,它基於 HTML 5 的表單校驗功能,支持很多內置的校驗規則,同時也提供了自定義規則的便捷 ...

  5. STM8 PIN setting(output)

    今日在设置引脚输出的时候,本想设置为open-drain输出,然后对其输出高低.但是发现无法输出高(初始化为开漏低电平),始终为低.后来改为push-pull 输出,就能输出高低了.真有意思,转到SP ...

  6. ADO.Net——增、删、改、查

    数据访问 对应命名空间:System.Data.SqlClient; SqlConnection:连接对象 SqlCommand:命令对象 SqlDataReader:读取器对象 CommandTex ...

  7. Codeforces Round #411 div2

    A. Fake NP 题意:询问一个区间[L,R]出现次数最多的正整数因子(>1). 一个区间内一个因子P出现次数大概为[R/P]-[(L-1)/P],约等于(R-L+1)/P,P取2时最优.注 ...

  8. itextsharp-5.2.1-修正无法签名大文件问题

    PDF文件格式几乎是所有开发平台或者业务系统都热爱的一种文档格式. 目前有很多优秀的开源PDF组件和类库.主要平时是使用.NET和Java开发,所以比较偏好使用iText,当然,它本身就很强大.iTe ...

  9. 有关mybatis的动态sql

    一般地,实现动态SQL都是在xml中使用等标签实现的. 我们在这里使用SQL构造器的方式, 即由abstract sql写出sql的过程, 当然感觉本质上还是一个StringBuilder, 来手动生 ...

  10. Android(java)学习笔记137:ListView编写步骤(重点)

    1.ListView在我们的手机android编写程序中使用是十分广泛的,比如如下图中 短信 和 手机设置 都是ListView的效果: 手机设置:             短信:    2.正因为这 ...