题意:

有一个k面的骰子,然后问你n个骰子朝上的面数字之和=s的方案;

思路:

dp[i][j] 代表 前 i 个骰子组成 j 有多少种方案;

显然

dp[i][j] = dp[i - 1][j - 1] + dp[i - 1][j - 2] + ... + dp[i - 1][j - k];



我们算 dp[i][j] 的时候,需要dp[i-1] 的前缀和已经打出来了

我们求dp[i][j] 的时候,要求出 dp[i][j] 的前缀和,提供给求 i+1 的时候使用;

还有第二种方法:wonter

#include <bits/stdc++.h>
using namespace std;
typedef long long LL;
typedef unsigned long long ULL;
typedef pair<int,int>PII;
const double eps=1e-5;
const double pi=acos(-1.0);
const int INF=0x3f3f3f3f;
const int mod=100000007;
const int N=15000+10;
int n,k,s;
int dp[N];
int sum[2][N]; int main()
{
int T,cas=1;
scanf("%d",&T);
while(T--)
{
scanf("%d%d%d",&n,&k,&s);
memset(sum,0,sizeof(sum));
memset(dp,0,sizeof(dp)); for(int i=0;i<=s;i++)
sum[0][i]=1; for(int i=1;i<=n;i++)
{
sum[i&1][0]=0;
for(int j=1;j<=s;++j)
{
int l,r;
l=max(0,j-k);
r=j-1;
if(l-1<0)
dp[j]=sum[(i-1)&1][r];
else
dp[j]=(sum[(i-1)&1][r]-sum[(i-1)&1][l-1]+mod)%mod;
sum[i&1][j]=(sum[i&1][j-1]+dp[j])%mod;
}
}
printf("Case %d: %d\n",cas++,dp[s]);
}
return 0;
} /*
5
1 6 3
2 9 8
500 6 1000
800 800 10000
2 100 10
*/

lightoj1145 【DP优化求方案】的更多相关文章

  1. HDU5119【dp背包求方案数】

    题意: 有n个数,问有多少方案满足取几个数的异或值>=m; 思路: 背包思想,每次就是取或不取,然后输出>=m的方案就好了. #include <bits/stdc++.h> ...

  2. NOIP2015 子串 (DP+优化)

    子串 (substring.cpp/c/pas) [问题描述] 有两个仅包含小写英文字母的字符串 A 和 B.现在要从字符串 A 中取出 k 个 互不重 叠 的非空子串,然后把这 k 个子串按照其在字 ...

  3. 取数字(dp优化)

    取数字(dp优化) 给定n个整数\(a_i\),你需要从中选取若干个数,使得它们的和是m的倍数.问有多少种方案.有多个询问,每次询问一个的m对应的答案. \(1\le n\le 200000,1\le ...

  4. loj6171/bzoj4899 记忆的轮廊(期望dp+优化)

    题目: https://loj.ac/problem/6171 分析: 设dp[i][j]表示从第i个点出发(正确节点),还可以有j个存档点(在i点使用一个存档机会),走到终点n的期望步数 那么 a[ ...

  5. 【学习笔记】动态规划—各种 DP 优化

    [学习笔记]动态规划-各种 DP 优化 [大前言] 个人认为贪心,\(dp\) 是最难的,每次遇到题完全不知道该怎么办,看了题解后又瞬间恍然大悟(TAT).这篇文章也是花了我差不多一个月时间才全部完成 ...

  6. [总结]一些 DP 优化方法

    目录 注意本文未完结 写在前面 矩阵快速幂优化 前缀和优化 two-pointer 优化 决策单调性对一类 1D/1D DP 的优化 \(w(i,j)\) 只含 \(i\) 和 \(j\) 的项--单 ...

  7. DP 优化方法大杂烩 & 做题记录 I.

    标 * 的是推荐阅读的部分 / 做的题目. 1. 动态 DP(DDP)算法简介 动态动态规划. 以 P4719 为例讲一讲 ddp: 1.1. 树剖解法 如果没有修改操作,那么可以设计出 DP 方案 ...

  8. DP 优化小技巧

    收录一些比较冷门的 DP 优化方法. 1. 树上依赖性背包 树上依赖性背包形如在树上选出若干个物品做背包问题,满足这些物品连通.由于 01 背包,多重背包和完全背包均可以在 \(\mathcal{O} ...

  9. poj3254 Corn Fields 利用状态压缩求方案数;

    Corn Fields 2015-11-25 13:42:33 Time Limit: 2000MS   Memory Limit: 65536K Total Submissions: 10658   ...

随机推荐

  1. go echo studygolang ___go_build_myT_go__1_.exe

    https://github.com/studygolang/studygolang [stat]; 用户在线数据存到哪里:redis -> 表示存入 redis,这样支持多机部署; onlin ...

  2. ABAP抓取异常 try ,endtry.

    DATA: O_CX TYPE REF TO CX_ROOT. TRY . MOVE LS_UPLOAD-MENGE TO LS_OUTPUT-MENGE. CATCH CX_ROOT INTO O_ ...

  3. 怎样把word直接转换成ppt

  4. DTLS学习笔记 -- RFC 4347- 6347

    想学习一下dtls,是因为想以后没有公司免费VPN可用的时候,我能买一个主机,自己建一个VPN. 1.介绍 Web, email大多用TLS协议来做安全的网络传输,它们必须跑在可靠的TCP传输通道里. ...

  5. loj#2340. 「WC2018」州区划分

    FWT&&FMT板子 #include<cstdio> #include<iostream> #include<cstring> #include& ...

  6. CSU1808 地铁 —— dijkstra变形

    题目链接:http://acm.csu.edu.cn/csuoj/problemset/problem?pid=1808 题解:由于中转线路需要花费一定的时间,所以一般的以顶点为研究对象的dijkst ...

  7. IE浏览器没有加载CSS或js文件的秘密及解决办法

    其实是两处资料拼成这一篇博文的,因为在开发过程中遇到,有的文章只是说明原因,而没有给出解决方案,所以再次给出解释和解决方法,以供参考,如果有好的解决方法,也请分享下! ---------------- ...

  8. wpf图片定点缩放

    去年犯小人,万事不顺,4月刚换工作,开始新工作 遇到一个小问题,需要读取图片,然后对图片进行定点缩放,很简答的逻辑,很简单的代码,但是,这尼玛我被wpf给坑了,这一坑就是三天 好了,很简单的一个UI ...

  9. SDK Manager中勾选项

    运行SDK Manager 勾选对应版本的SDK,从这里基本可以知道一个Android版本对应着一个版本的API. 其中每个包都有这么几个文件: Documentation for Android S ...

  10. YII的RBAC

    转自:http://www.cppblog.com/guojingjia2006/archive/2013/01/15/197298.html 开始准备 Yii提供了强大的配置机制和很多现成的类库.在 ...