题目描述

N个点,形成一个树状结构。有M次发放,每次选择两个点x,y,对于x到y的路径上(含x,y)每个点发一袋Z类型的物品。完成所有发放后,每个点存放最多的是哪种物品。

输入

第一行数字N,M
接下来N-1行,每行两个数字a,b,表示a与b间有一条边
再接下来M行,每行三个数字x,y,z.如题

输出

输出有N行
每i行的数字表示第i个点存放最多的物品是哪一种,如果有多种物品的数量一样,输出编号最小的。如果某个点没有物品则输出0

样例输入

3 2
1 2
1 3
1 3 1
2 3 2

样例输出

1
2
1


题解

权值线段树合并

由于询问在修改之后,因此我们可以把修改差分,然后处理询问时合并标记即可。

于是可以对于每个树上结点维护一棵线段树,维护区间最值和最值位置。

先把操作的zi离散化,然后考虑差分:在xi和yi的线段树上将zi位置+1,在lca(xi,yi)和fa[lca(xi,yi)]的线段树上将zi位置-1.

然后考虑标记的合并,可以使用线段树合并,复杂度为均摊$O(\log n)$。

最后从底向上合并标记并更新答案即可。

时间复杂度为$O((n+m)\log n)$。

#include <cstdio>
#include <cstring>
#include <algorithm>
#define N 100010
using namespace std;
int head[N] , to[N << 1] , next[N << 1] , cnt , fa[N][18] , deep[N] , log[N] , x[N] , y[N] , z[N] , v[N];
int m , ls[N * 60] , rs[N * 60] , mx[N * 60] , mp[N * 60] , root[N] , tot , ans[N];
void add(int x , int y)
{
to[++cnt] = y , next[cnt] = head[x] , head[x] = cnt;
}
void dfs(int x)
{
int i;
for(i = 1 ; (1 << i) <= deep[x] ; i ++ ) fa[x][i] = fa[fa[x][i - 1]][i - 1];
for(i = head[x] ; i ; i = next[i])
if(to[i] != fa[x][0])
fa[to[i]][0] = x , deep[to[i]] = deep[x] + 1 , dfs(to[i]);
}
int lca(int x , int y)
{
int i;
if(deep[x] < deep[y]) swap(x , y);
for(i = log[deep[x] - deep[y]] ; ~i ; i -- )
if((1 << i) <= deep[x] - deep[y])
x = fa[x][i];
for(i = log[deep[x]] ; ~i ; i -- )
if((1 << i) <= deep[x] && fa[x][i] != fa[y][i])
x = fa[x][i] , y = fa[y][i];
return x == y ? x : fa[x][0];
}
void pushup(int x)
{
if(mx[ls[x]] >= mx[rs[x]]) mx[x] = mx[ls[x]] , mp[x] = mp[ls[x]];
else mx[x] = mx[rs[x]] , mp[x] = mp[rs[x]];
}
void update(int p , int a , int l , int r , int &x)
{
if(!x) x = ++tot;
if(l == r)
{
mx[x] += a , mp[x] = p;
return;
}
int mid = (l + r) >> 1;
if(p <= mid) update(p , a , l , mid , ls[x]);
else update(p , a , mid + 1 , r , rs[x]);
pushup(x);
}
int merge(int l , int r , int x , int y)
{
if(!x) return y;
if(!y) return x;
if(l == r)
{
mx[x] += mx[y];
return x;
}
int mid = (l + r) >> 1;
ls[x] = merge(l , mid , ls[x] , ls[y]);
rs[x] = merge(mid + 1 , r , rs[x] , rs[y]);
pushup(x);
return x;
}
void solve(int x)
{
int i;
for(i = head[x] ; i ; i = next[i])
if(to[i] != fa[x][0])
solve(to[i]) , root[x] = merge(1 , m , root[x] , root[to[i]]);
if(mx[root[x]]) ans[x] = v[mp[root[x]]];
}
int main()
{
int n , i , a , b;
scanf("%d%d" , &n , &m);
for(i = 2 ; i <= n ; i ++ ) scanf("%d%d" , &a , &b) , add(a , b) , add(b , a) , log[i] = log[i >> 1] + 1;
dfs(1);
for(i = 1 ; i <= m ; i ++ ) scanf("%d%d%d" , &x[i] , &y[i] , &z[i]) , v[i] = z[i];
sort(v + 1 , v + m + 1);
for(i = 1 ; i <= m ; i ++ )
{
z[i] = lower_bound(v + 1 , v + m + 1 , z[i]) - v , a = lca(x[i] , y[i]);
update(z[i] , 1 , 1 , m , root[x[i]]) , update(z[i] , 1 , 1 , m , root[y[i]]);
update(z[i] , -1 , 1 , m , root[a]);
if(fa[a][0]) update(z[i] , -1 , 1 , m , root[fa[a][0]]);
}
solve(1);
for(i = 1 ; i <= n ; i ++ ) printf("%d\n" , ans[i]);
return 0;
}

【bzoj3307】雨天的尾巴 权值线段树合并的更多相关文章

  1. bzoj3307 雨天的尾巴 题解(线段树合并+树上差分)

    Description N个点,形成一个树状结构.有M次发放,每次选择两个点x,y 对于x到y的路径上(含x,y)每个点发一袋Z类型的物品.完成 所有发放后,每个点存放最多的是哪种物品. Input ...

  2. B20J_2733_[HNOI2012]永无乡_权值线段树合并

    B20J_2733_[HNOI2012]永无乡_权值线段树合并 Description:n座岛,编号从1到n,每座岛都有自己的独一无二的重要度,按照重要度可以将这n座岛排名,名次用1到 n来表示.某些 ...

  3. 【bzoj1977】[BeiJing2010组队]次小生成树 Tree 最小生成树+权值线段树合并

    题目描述 求一张图的严格次小生成树的边权和,保证存在. 输入 第一行包含两个整数N 和M,表示无向图的点数与边数. 接下来 M行,每行 3个数x y z 表示,点 x 和点y之间有一条边,边的权值为z ...

  4. 【bzoj4719】[Noip2016]天天爱跑步 权值线段树合并

    题目描述 给出一棵n个点的树,以及m次操作,每次操作从起点向终点以每秒一条边的速度移动(初始时刻为0),最后对于每个点询问有多少次操作在经过该点的时刻为某值. 输入 第一行有两个整数N和M .其中N代 ...

  5. 【bzoj2212】[Poi2011]Tree Rotations 权值线段树合并

    原文地址:http://www.cnblogs.com/GXZlegend/p/6826614.html 题目描述 Byteasar the gardener is growing a rare tr ...

  6. luogu3224 永无乡(动态开点,权值线段树合并)

    luogu3224 永无乡(动态开点,权值线段树合并) 永无乡包含 n 座岛,编号从 1 到 n ,每座岛都有自己的独一无二的重要度,按照重要度可以将这 n 座岛排名,名次用 1 到 n 来表示.某些 ...

  7. 【bzoj4399】魔法少女LJJ 并查集+权值线段树合并

    题目描述 在森林中见过会动的树,在沙漠中见过会动的仙人掌过后,魔法少女LJJ已经觉得自己见过世界上的所有稀奇古怪的事情了LJJ感叹道“这里真是个迷人的绿色世界,空气清新.淡雅,到处散发着醉人的奶浆味: ...

  8. HDU-6704 K-th occurrence (后缀自动机father树上倍增建权值线段树合并)

    layout: post title: HDU-6704 K-th occurrence (后缀自动机father树上倍增建权值线段树合并) author: "luowentaoaa&quo ...

  9. BZOJ2733/LG3324 「HNOI2014」永无乡 权值线段树合并

    问题描述 BZOJ2733 LG3224 题解 对于每个结点建立一棵权值线段树. 查询操作就去查询第 \(k\) 大,合并操作就合并两颗权值线段树. 并查集维护连通性. 同时 STO hkk,zcr, ...

随机推荐

  1. IIS 7.0的根文件(applicationHost.config)位置及说明

    位置 C:\Windows\System32\inetsrv\config\applicationHost.config 说明 https://www.microsoft.com/taiwan/tec ...

  2. SAP标准培训课程C4C10学习笔记(三)第三单元

    第三单元:Account and Contact management Account和Contact概念和SAP CRM里是一样的: 并且支持同ERP和CRM的客户主数据做同步. 关于具体的同步场景 ...

  3. 日常-acm-韩信点兵

    相传韩信才智过人,从不直接清点自己军队的人数,只要让士兵先后以三人一排,五人一排,七人一排地变换队形,而他每次只看一眼队伍的排尾就知道人数了.输入包含多组数据,每组数据包含三个非负整数a,b,c,表示 ...

  4. linux文本编辑器-VIM基本使用方法

    vim [OPTION]... FILE... +/PATTERN:打开文件后,直接让光标处于第一个被PATTERN匹配到的行的行首vim + file 直接打开file,光标在最后一行 三种主要模式 ...

  5. Bootstrap历练实例:可取消的警告

    <!DOCTYPE html><html><head><meta http-equiv="Content-Type" content=&q ...

  6. 【最大流】bzoj1711: [Usaco2007 Open]Dining吃饭

    正在网络流入门(原来这种题用网络流做) Description 农夫JOHN为牛们做了很好的食品,但是牛吃饭很挑食. 每一头牛只喜欢吃一些食品和饮料而别的一概不吃.虽然他不一定能把所有牛喂饱,他还是想 ...

  7. java工作环境配置jdk,idea

    下载 jdk 1.8 https://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.html 配置环境 ...

  8. Golang 简单 http 代理转发

    程序基本实现了对http的完整转发,目前暂不支持https windows需要在设置中的网络>代理设置为手动,并开启代理服务器,填写ip和端口 // httpForward package ma ...

  9. 3.layhm框架的流程与Boot类启动

    思路 在项目根目录里新建好对应的目录 cmd里在项目根目录里,composer init初使化,一路回车 把要自动加载的文件和目录定在composer.json文件的autoload里,file是自动 ...

  10. Python中的列表(1)

    1.什么是列表? 列表是由一组按特定顺序排列的元素组成. 2.如何表示? 在Python中用方括号([ ])来表示列表.栗子如下: contries = ['China','England','Fra ...