题目描述

N个点,形成一个树状结构。有M次发放,每次选择两个点x,y,对于x到y的路径上(含x,y)每个点发一袋Z类型的物品。完成所有发放后,每个点存放最多的是哪种物品。

输入

第一行数字N,M
接下来N-1行,每行两个数字a,b,表示a与b间有一条边
再接下来M行,每行三个数字x,y,z.如题

输出

输出有N行
每i行的数字表示第i个点存放最多的物品是哪一种,如果有多种物品的数量一样,输出编号最小的。如果某个点没有物品则输出0

样例输入

3 2
1 2
1 3
1 3 1
2 3 2

样例输出

1
2
1


题解

权值线段树合并

由于询问在修改之后,因此我们可以把修改差分,然后处理询问时合并标记即可。

于是可以对于每个树上结点维护一棵线段树,维护区间最值和最值位置。

先把操作的zi离散化,然后考虑差分:在xi和yi的线段树上将zi位置+1,在lca(xi,yi)和fa[lca(xi,yi)]的线段树上将zi位置-1.

然后考虑标记的合并,可以使用线段树合并,复杂度为均摊$O(\log n)$。

最后从底向上合并标记并更新答案即可。

时间复杂度为$O((n+m)\log n)$。

#include <cstdio>
#include <cstring>
#include <algorithm>
#define N 100010
using namespace std;
int head[N] , to[N << 1] , next[N << 1] , cnt , fa[N][18] , deep[N] , log[N] , x[N] , y[N] , z[N] , v[N];
int m , ls[N * 60] , rs[N * 60] , mx[N * 60] , mp[N * 60] , root[N] , tot , ans[N];
void add(int x , int y)
{
to[++cnt] = y , next[cnt] = head[x] , head[x] = cnt;
}
void dfs(int x)
{
int i;
for(i = 1 ; (1 << i) <= deep[x] ; i ++ ) fa[x][i] = fa[fa[x][i - 1]][i - 1];
for(i = head[x] ; i ; i = next[i])
if(to[i] != fa[x][0])
fa[to[i]][0] = x , deep[to[i]] = deep[x] + 1 , dfs(to[i]);
}
int lca(int x , int y)
{
int i;
if(deep[x] < deep[y]) swap(x , y);
for(i = log[deep[x] - deep[y]] ; ~i ; i -- )
if((1 << i) <= deep[x] - deep[y])
x = fa[x][i];
for(i = log[deep[x]] ; ~i ; i -- )
if((1 << i) <= deep[x] && fa[x][i] != fa[y][i])
x = fa[x][i] , y = fa[y][i];
return x == y ? x : fa[x][0];
}
void pushup(int x)
{
if(mx[ls[x]] >= mx[rs[x]]) mx[x] = mx[ls[x]] , mp[x] = mp[ls[x]];
else mx[x] = mx[rs[x]] , mp[x] = mp[rs[x]];
}
void update(int p , int a , int l , int r , int &x)
{
if(!x) x = ++tot;
if(l == r)
{
mx[x] += a , mp[x] = p;
return;
}
int mid = (l + r) >> 1;
if(p <= mid) update(p , a , l , mid , ls[x]);
else update(p , a , mid + 1 , r , rs[x]);
pushup(x);
}
int merge(int l , int r , int x , int y)
{
if(!x) return y;
if(!y) return x;
if(l == r)
{
mx[x] += mx[y];
return x;
}
int mid = (l + r) >> 1;
ls[x] = merge(l , mid , ls[x] , ls[y]);
rs[x] = merge(mid + 1 , r , rs[x] , rs[y]);
pushup(x);
return x;
}
void solve(int x)
{
int i;
for(i = head[x] ; i ; i = next[i])
if(to[i] != fa[x][0])
solve(to[i]) , root[x] = merge(1 , m , root[x] , root[to[i]]);
if(mx[root[x]]) ans[x] = v[mp[root[x]]];
}
int main()
{
int n , i , a , b;
scanf("%d%d" , &n , &m);
for(i = 2 ; i <= n ; i ++ ) scanf("%d%d" , &a , &b) , add(a , b) , add(b , a) , log[i] = log[i >> 1] + 1;
dfs(1);
for(i = 1 ; i <= m ; i ++ ) scanf("%d%d%d" , &x[i] , &y[i] , &z[i]) , v[i] = z[i];
sort(v + 1 , v + m + 1);
for(i = 1 ; i <= m ; i ++ )
{
z[i] = lower_bound(v + 1 , v + m + 1 , z[i]) - v , a = lca(x[i] , y[i]);
update(z[i] , 1 , 1 , m , root[x[i]]) , update(z[i] , 1 , 1 , m , root[y[i]]);
update(z[i] , -1 , 1 , m , root[a]);
if(fa[a][0]) update(z[i] , -1 , 1 , m , root[fa[a][0]]);
}
solve(1);
for(i = 1 ; i <= n ; i ++ ) printf("%d\n" , ans[i]);
return 0;
}

【bzoj3307】雨天的尾巴 权值线段树合并的更多相关文章

  1. bzoj3307 雨天的尾巴 题解(线段树合并+树上差分)

    Description N个点,形成一个树状结构.有M次发放,每次选择两个点x,y 对于x到y的路径上(含x,y)每个点发一袋Z类型的物品.完成 所有发放后,每个点存放最多的是哪种物品. Input ...

  2. B20J_2733_[HNOI2012]永无乡_权值线段树合并

    B20J_2733_[HNOI2012]永无乡_权值线段树合并 Description:n座岛,编号从1到n,每座岛都有自己的独一无二的重要度,按照重要度可以将这n座岛排名,名次用1到 n来表示.某些 ...

  3. 【bzoj1977】[BeiJing2010组队]次小生成树 Tree 最小生成树+权值线段树合并

    题目描述 求一张图的严格次小生成树的边权和,保证存在. 输入 第一行包含两个整数N 和M,表示无向图的点数与边数. 接下来 M行,每行 3个数x y z 表示,点 x 和点y之间有一条边,边的权值为z ...

  4. 【bzoj4719】[Noip2016]天天爱跑步 权值线段树合并

    题目描述 给出一棵n个点的树,以及m次操作,每次操作从起点向终点以每秒一条边的速度移动(初始时刻为0),最后对于每个点询问有多少次操作在经过该点的时刻为某值. 输入 第一行有两个整数N和M .其中N代 ...

  5. 【bzoj2212】[Poi2011]Tree Rotations 权值线段树合并

    原文地址:http://www.cnblogs.com/GXZlegend/p/6826614.html 题目描述 Byteasar the gardener is growing a rare tr ...

  6. luogu3224 永无乡(动态开点,权值线段树合并)

    luogu3224 永无乡(动态开点,权值线段树合并) 永无乡包含 n 座岛,编号从 1 到 n ,每座岛都有自己的独一无二的重要度,按照重要度可以将这 n 座岛排名,名次用 1 到 n 来表示.某些 ...

  7. 【bzoj4399】魔法少女LJJ 并查集+权值线段树合并

    题目描述 在森林中见过会动的树,在沙漠中见过会动的仙人掌过后,魔法少女LJJ已经觉得自己见过世界上的所有稀奇古怪的事情了LJJ感叹道“这里真是个迷人的绿色世界,空气清新.淡雅,到处散发着醉人的奶浆味: ...

  8. HDU-6704 K-th occurrence (后缀自动机father树上倍增建权值线段树合并)

    layout: post title: HDU-6704 K-th occurrence (后缀自动机father树上倍增建权值线段树合并) author: "luowentaoaa&quo ...

  9. BZOJ2733/LG3324 「HNOI2014」永无乡 权值线段树合并

    问题描述 BZOJ2733 LG3224 题解 对于每个结点建立一棵权值线段树. 查询操作就去查询第 \(k\) 大,合并操作就合并两颗权值线段树. 并查集维护连通性. 同时 STO hkk,zcr, ...

随机推荐

  1. 【转】IOS开发—IOS 8 中设置applicationIconBadgeNumber和消息推送

    在IOS7中设置applicationIconBadgeNumber不会有什么问题,但是直接在IOS8中设置applicationIconBadgeNumber会报错 因为在IOS8中要想设置appl ...

  2. 用dfs求解八皇后问题

    相信大家都已经很熟悉八皇后问题了,就是指:在8X8格的国际象棋上摆放八个皇后,使其不能互相攻击,即任意两个皇后都不能处于同一行.同一列或同一斜线上,问有多少种摆法.主要思路:按行进行深度优先搜索,在该 ...

  3. ubuntu开放端口

    1.安装iptables(一般情况,ubuntu安装好的时候,iptables会被安装上),使用以下命令: $apt-get update $apt-get install iptables 2.安装 ...

  4. stixel-world和psmnet结合出现的问题

    float32位,4字节 原本的stixel-world是用sgbm生成深度图,并且转成了float型 psmnet保存最终的disparity图是保存成uint16的,skimage.io.imsa ...

  5. localStorage对象

    localStorage对象存储的数据没有时间限制,比如:它可以存储到第二天,第三周,半年,或二三年,只要您的电脑没有重新安装系统或更换硬盘,数据仍然会被保留着. 实例: <!DOCTYPE h ...

  6. Tomcat详细安装配置

    1.首先是Tomcat的获取和安装. 获取当然得上Apache的官方网站下载,开源免费,而且带宽也足够.下载会很快. 这是两种不同的下载,一个是普通安装版本,一个是解压安装版本.使用起来是一样的,只是 ...

  7. Vue和MVVM对应关系

    Vue和MVVM的对应关系 Vue是受MVVM启发的,那么有哪些相同之处呢?以及对应关系? MVVM(Model-view-viewmodel) MVVM还有一种模式model-view-binder ...

  8. vue中文本域限制字数的方法

    用watch方法,来限制字数 <template> <div class="box"> <textarea v-model="title&q ...

  9. paper:synthesizable finite state machine design techniques using the new systemverilog 3.0 enhancements 之 standard verilog FSM conding styles(二段式)

    1.Two always block style with combinational outputs(Good Style) 对应的代码如下: 2段式总结: (1)the combinational ...

  10. COMP9021--6.6

    1. 在print结尾处添加end='' print默认在字符串结尾处添加换行符,添加end=''后表示这个语句并没有结束,结尾不换行 2. 为了减少重复代码以及便于修改,我们可以编写函数 1) 函数 ...