AOJ 2249 Road Construction (dijkstra)
某国王需要修路,王国有一个首都和多个城市,需要修路。已经有修路计划了,但是修路费用太高。
为了减少修路费用,国王决定从计划中去掉一些路,但是需要满足一下两点:
- 保证所有城市都能连通
- 所有城市到首都的最短路不变
思路:
在Dijkstra找最短路的时候,就记录一下费用
if(d[e.to] > d[v] + e.dist)
{
...
prev_min_cost[e.to] = e.cost; // 最短路必经之路,则费用也必须要
}
else if(d[e.to] == d[v] + e.dist) // 最短路可选择之路,选择最小的费用连接
prev_min_cost[e.to] = min(prev_min_cost[e.to], e.cost);
程序
#include <iostream>
#include <queue>
#include <functional>
#include <cstring>
using namespace std;
struct edge
{
int to, dist, cost;
edge(int to, int dist, int cost) : to(to), dist(dist), cost(cost) {}
bool operator<(const edge &b) const
{
return dist > b.dist;
}
};
vector<edge> G[10005];
int N, M; // 节点数,道路数
int d[10005]; // 距离源点s(s==1)的最小距离
int prev_min_cost[10005]; // 节点的邻接边最小花费
int ans;
void dijkstra(int s)
{
memset(d, 0x3f, sizeof(d));
memset(prev_min_cost, 0x3f, sizeof(prev_min_cost));
d[s] = 0;
priority_queue<edge> que;
que.push(edge(s, d[s], 0));
while (!que.empty())
{
edge p = que.top(); que.pop();
int v = p.to;
if (d[v] < p.dist) continue;
for (int i = 0; i<G[v].size(); ++i)
{
edge e = G[v][i];
if (d[e.to] > d[v] + e.dist)
{
d[e.to] = d[v] + e.dist;
que.push(edge(e.to, d[e.to], G[v][i].cost));
prev_min_cost[e.to] = e.cost; // 最短路必经之路,则费用也必须要
}
else if (d[e.to] == d[v] + e.dist) // 最短路可选择之路,选择最小的费用连接
prev_min_cost[e.to] = min(prev_min_cost[e.to], e.cost);
}
}
} void solve()
{
dijkstra(1);
for (int u = 2; u <= N; ++u) ans += prev_min_cost[u]; // 求出所有必须的费用(n-1条边)
cout << ans << endl;
} int main()
{
int u, v, d, c;
while (cin >> N >> M)
{
for (int u = 1; u <= N; ++u) G[u].clear();
ans = 0;
if (N == M && N == 0) break;
for (int i = 0; i < M; ++i)
{
cin >> u >> v >> d >> c;
G[u].push_back(edge(v, d, c)); // 构图
G[v].push_back(edge(u, d, c));
}
solve();
}
return 0;
}
AOJ 2249 Road Construction (dijkstra)的更多相关文章
- AOJ 2249 Road Construction(Dijkstra+优先队列)
[题目大意] http://judge.u-aizu.ac.jp/onlinejudge/description.jsp?id=2249 [题目大意] 一张无向图,建造每条道路需要的费用已经给出, 现 ...
- Aizu-2249 Road Construction(dijkstra求最短路)
Aizu - 2249 题意:国王本来有一个铺路计划,后来发现太贵了,决定删除计划中的某些边,但是有2个原则,1:所有的城市必须能达到. 2:城市与首都(1号城市)之间的最小距离不能变大. 并且在这2 ...
- Aizu2249 Road Construction(dijkstra优化+思路 好题)
https://vjudge.net/problem/Aizu-2249 感觉这题和2017女生赛的Deleting Edge思路很像,都是先找最短路,然后替换边的. 但是这题用最朴素的dijkstr ...
- 迪杰斯特拉(dijkstra)算法的简要理解和c语言实现(源码)
迪杰斯特拉(dijkstra)算法:求最短路径的算法,数据结构课程中学习的内容. 1 . 理解 算法思想::设G=(V,E)是一个带权有向图,把图中顶点集合V分成两组,第一组为已求出最短路径的顶点集合 ...
- 最短路径之迪杰斯特拉(Dijkstra)算法
迪杰斯特拉(Dijkstra)算法主要是针对没有负值的有向图,求解其中的单一起点到其他顶点的最短路径算法.本文主要总结迪杰斯特拉(Dijkstra)算法的原理和算法流程,最后通过程序实现在一个带权值的 ...
- 理解最短路径——迪杰斯特拉(dijkstra)算法
原址地址:http://ibupu.link/?id=29 1. 迪杰斯特拉算法简介 迪杰斯特拉(dijkstra)算法是典型的用来解决最短路径的算法,也是很多教程中的范例,由荷兰计算机科 ...
- 图论——迪杰斯特拉算法(Dijkstra)实现,leetcode
迪杰斯特拉算法(Dijkstra):求一点到另外一点的最短距离 两种实现方法: 邻接矩阵,时间复杂度O(n^2) 邻接表+优先队列,时间复杂度O(mlogn)(适用于稀疏图) (n:图的节点数,m:图 ...
- 算法-迪杰斯特拉算法(dijkstra)-最短路径
迪杰斯特拉算法(dijkstra)-最短路径 简介: 迪杰斯特拉算法是由荷兰计算机科学家狄克斯特拉于1959 年提出的,因此又叫狄克斯特拉算法.是从一个顶点到其余各顶点的最短路径算法,解决的是有向图中 ...
- 数据结构与算法——迪杰斯特拉(Dijkstra)算法
tip:这个算法真的很难讲解,有些地方只能意会了,多思考多看几遍还是可以弄懂的. 应用场景-最短路径问题 战争时期,胜利乡有 7 个村庄 (A, B, C, D, E, F, G) ,现在有六个邮差, ...
随机推荐
- WebMvcConfigurerAdapter已过时,替换接口或类
WebMvcConfigurerAdapter已经过时,在新版本2.x中被废弃,原因是springboot2.0以后,引用的是spring5.0,而spring5.0取消了WebMvcConfigur ...
- 开源项目练习EF+jQueryUI前后端分离设计
最近大家流行把项目开源,我也来玩玩.只是开源公司项目不好,小弟只好从公司项目经验上另外弄出一套练习开源给大家. 这个项目可以做简单的团队任务系统(做一些简单的任务分配,没经过严格测试.功能单一别喷啊, ...
- 怎样动态地插入不会暴露给用户的JS文件
也是无意间看见的,以前想过这个问题,但是没多想,今天看到这段代码豁然开朗 (function() { var dynamicScript = document.createElement('scrip ...
- golang string int int64转换
#string到int int,err:=strconv.Atoi(string) #string到int64 int64, err := strconv.ParseInt(string, 10, 6 ...
- Delphi基础必记-快捷键
快捷键: F12 代码窗口/窗体之间切换Ctrl + Shift + F 查找文件 Ctrl + Shift + G 为接口加入新的GUIDF4 运行到光标位置 F5 设置/取消断点 或用光标点击F7 ...
- 论文笔记系列-Neural Architecture Search With Reinforcement Learning
摘要 神经网络在多个领域都取得了不错的成绩,但是神经网络的合理设计却是比较困难的.在本篇论文中,作者使用 递归网络去省城神经网络的模型描述,并且使用 增强学习训练RNN,以使得生成得到的模型在验证集上 ...
- UML入门[转]
访问权限控制 class Dummy { - private field1 # protected field2 ~ package method1() + public method2() } Al ...
- MFC创建线程示例
MFC创建线程示例 AfxBeginThread() 创建现场的方法是AfxBeginThread()函数. 在[.CPP]文件定义一个全局变量,决定什么时候退出这个线程. BOOL g_bWillE ...
- zabbix系列(三)zabbix3.0.4微信告警配置详解
一.准备工作 申请微信公众号,并且是可以有发送消息的接口.添加有个脚本去调用微信的api. 之后可以参考下zabbix 的搭建,然后了解下脚本报警,之后再考虑报警方式的多样化. 个人微信一个 个人邮箱 ...
- MonkeyRunner之MonkeyRecorder录制回放脚本(亲测可正常运行)
MonkeyRunner可以录制和回放脚本 前置条件: 电脑连接手机,输入adb devices 看看返回是否手机设备列表(我是真机,模拟器也可以) 配置好安卓sdk和Python环境 step: 1 ...