最短路径——Floyd-Warshall算法
Floyd-Warshall算法,简称Floyd算法,用于求解任意两点间的最短距离,时间复杂度为O(n^3)。
我们平时所见的Floyd算法的一般形式如下:
void Floyd()
{
int i,j,k;
for(k=;k<=n;k++)
for(i=;i<=n;i++)
for(j=;j<=n;j++)
if(dist[i][k]+dist[k][j]<dist[i][j])
dist[i][j]=dist[i][k]+dist[k][j];
}
注意下第6行这个地方,如果dist[i][k]或者dist[k][j]不存在,程序中用一个很大的数代替。最好写成if(dist[i][k]!=INF && dist[k][j]!=INF && dist[i][k]+dist[k][j]<dist[i][j]),从而防止溢出所造成的错误。
上面这个形式的算法其实是Floyd算法的精简版,而真正的Floyd算法是一种基于DP(Dynamic Programming)的最短路径算法。
例题分析:
设图G中n 个顶点的编号为1到n。令c [i, j, k]表示从i 到j 的最短路径的长度,其中k 表示该路径中的最大顶点,也就是说c[i,j,k]这条最短路径所通过的中间顶点最大不超过k。因此,如果G中包含边<i, j>,则c[i, j, 0] =边<i, j> 的长度;若i= j ,则c[i,j,0]=0;如果G中不包含边<i, j>,则c (i, j, 0)= +∞。c[i, j, n] 则是从i 到j 的最短路径的长度。 对于任意的k>0,通过分析可以得到:中间顶点不超过k 的i 到j 的最短路径有两种可能:该路径含或不含中间顶点k。若不含,则该路径长度应为c[i, j, k-1],否则长度为 c[i, k, k-1] +c [k, j, k-1]。c[i, j, k]可取两者中的最小值。 状态转移方程:c[i, j, k]=min{c[i, j, k-1], c [i, k, k-1]+c [k, j, k-1]},k>0。 这样,问题便具有了最优子结构性质,可以用动态规划方法来求解。

为了进一步理解,观察上面这个有向图:若k=0, 1, 2, 3,则c[1,3,k]= +∞;c[1,3,4]= 28;若k = 5, 6, 7,则c [1,3,k] = 10;若k=8, 9, 10,则c[1,3,k] = 9。因此1到3的最短路径长度为9。 下面通过程序来分析这一DP过程,对应上面给出的有向图:
#include <iostream>
using namespace std; const int INF = ;
int n=,map[][],dist[][][];
void init()
{
int i,j;
for(i=;i<=n;i++)
for(j=;j<=n;j++)
map[i][j]=(i==j)?:INF;
map[][]=,map[][]=,map[][]=;
map[][]=,map[][]=,map[][]=;
map[][]=,map[][]=,map[][]=;
map[][]=,map[][]=,map[][]=;
map[][]=,map[][]=,map[][]=;
}
void floyd_dp()
{
int i,j,k;
for(i=;i<=n;i++)
for(j=;j<=n;j++)
dist[i][j][]=map[i][j];
for(k=;k<=n;k++)
for(i=;i<=n;i++)
for(j=;j<=n;j++){
dist[i][j][k]=dist[i][j][k-];
if(dist[i][k][k-]+dist[k][j][k-]<dist[i][j][k])
dist[i][j][k]=dist[i][k][k-]+dist[k][j][k-];
}
}
int main()
{
int k,u,v;
init();
floyd_dp();
while(cin>>u>>v,u||v)
{
for(k=;k<=n;k++)
{
if(dist[u][v][k]==INF) cout<<"+∞"<<endl;
else cout<<dist[u][v][k]<<endl;
}
}
return ;
}
Floyd-Warshall算法不仅能求出任意2点间的最短路径,还可以保存最短路径上经过的节点。下面用精简版的Floyd算法实现这一过程,程序中的图依然对应上面的有向图。
#include <iostream>
using namespace std; const int INF = ;
int n=,path[][],dist[][],map[][];
void init(){
int i,j;
for(i=;i<=n;i++)
for(j=;j<=n;j++)
map[i][j]=(i==j)?:INF;
map[][]=,map[][]=,map[][]=;
map[][]=,map[][]=,map[][]=;
map[][]=,map[][]=,map[][]=;
map[][]=,map[][]=,map[][]=;
map[][]=,map[][]=,map[][]=;
}
void floyd(){
int i,j,k;
for(i=;i<=n;i++)
for(j=;j<=n;j++)
dist[i][j]=map[i][j],path[i][j]=;
for(k=;k<=n;k++)
for(i=;i<=n;i++)
for(j=;j<=n;j++)
if(dist[i][k]+dist[k][j]<dist[i][j])
dist[i][j]=dist[i][k]+dist[k][j],path[i][j]=k;
}
void output(int i,int j){
if(i==j) return;
if(path[i][j]==) cout<<j<<' ';
else{
output(i,path[i][j]);
output(path[i][j],j);
}
}
int main(){
int u,v;
init();
floyd();
while(cin>>u>>v,u||v){
if(dist[u][v]==INF) cout<<"No path"<<endl;
else{
cout<<u<<' ';
output(u,v);
cout<<endl;
}
}
return ;
}
输入 1 3
输出 1 2 5 8 6 3
最短路径——Floyd-Warshall算法的更多相关文章
- Floyd—Warshall算法
我们用DP来求解任意两点间的最短路问题 首先定义状态:d[k][i][k]表示使用顶点1~k,i,j的情况下,i到j的最短路径 (d[0][i][j]表示只使用i和j,因此d[0][i][j] = c ...
- 图论之最短路径(1)——Floyd Warshall & Dijkstra算法
开始图论学习的第二部分:最短路径. 由于知识储备还不充足,暂时不使用邻接表的方法来计算. 最短路径主要分为两部分:多源最短路径和单源最短路径问题 多源最短路径: 介绍最简单的Floyd Warshal ...
- 单源最短路径——Floyd算法
正如我们所知道的,Floyd算法用于求最短路径.Floyd算法可以说是Warshall算法的扩展,三个for循环就可以解决问题,所以它的时间复杂度为O(n^3). Floyd算法的基本思想如下:从任意 ...
- 单源最短路径Dijkstra算法,多源最短路径Floyd算法
1.单源最短路径 (1)无权图的单源最短路径 /*无权单源最短路径*/ void UnWeighted(LGraph Graph, Vertex S) { std::queue<Vertex&g ...
- 7-8 哈利·波特的考试(25 分)(图的最短路径Floyd算法)
7-8 哈利·波特的考试(25 分) 哈利·波特要考试了,他需要你的帮助.这门课学的是用魔咒将一种动物变成另一种动物的本事.例如将猫变成老鼠的魔咒是haha,将老鼠变成鱼的魔咒是hehe等等.反方向变 ...
- 最短路径问题---Dijkstra算法详解
侵删https://blog.csdn.net/qq_35644234/article/details/60870719 前言 Nobody can go back and start a new b ...
- Gym 101873D - Pants On Fire - [warshall算法求传递闭包]
题目链接:http://codeforces.com/gym/101873/problem/D 题意: 给出 $n$ 个事实,表述为 "XXX are worse than YYY" ...
- 数据结构与算法--最短路径之Bellman算法、SPFA算法
数据结构与算法--最短路径之Bellman算法.SPFA算法 除了Floyd算法,另外一个使用广泛且可以处理负权边的是Bellman-Ford算法. Bellman-Ford算法 假设某个图有V个顶点 ...
- 单源最短路径(dijkstra算法)php实现
做一个医学项目,当中在病例评分时会用到单源最短路径的算法.单源最短路径的dijkstra算法的思路例如以下: 如果存在一条从i到j的最短路径(Vi.....Vk,Vj),Vk是Vj前面的一顶点.那么( ...
- 最大流算法之EK(最短路径增广算法)
这是网络流最基础的部分--求出源点到汇点的最大流(Max-Flow). 最大流的算法有比较多,本次介绍的是其中复杂度较高,但是比较好写的EK算法.(不涉及分层,纯粹靠BFS找汇点及回溯找最小流量得到最 ...
随机推荐
- .net使用cefsharp开源库开发chrome浏览器(二)
离上篇写介绍pc端的混合开发和为什么以cefsharp入手研究混合开发已经有好几天,一直忙,抽不出时间继续写怎么搭建cefsharp开发环境.其实没有时间是借口,一切都是懒,没有爱到深处. 今天继续写 ...
- Atitit xml命名空间机制
Atitit xml命名空间机制 命名冲突1 使用前缀来避免命名冲突2 使用命名空间(Namespaces)2 XML Namespace (xmlns) 属性2 默认的命名空间(Default Na ...
- c#设计模式-组合模式
在软件开发过程中,我们经常会遇到处理简单对象和复合对象的情况,例如对操作系统中目录的处理就是这样的一个例子,因为目录可以包括单独的文件,也可以包括文件夹,文件夹又是由文件组成的,由于简单对象和复合对象 ...
- Java Math 取整的方式
1.Math.floor floor,英文原意:地板. Math.floor 函数是求一个浮点数的地板,就是 向下 求一个最接近它的整数,它的值肯定会小于或等于这个浮点数. 2.Math.ceil c ...
- 读书笔记-you-don't-konw-js
第一部分:作用域和闭包 不要满足于只是让代码正常工作,而是弄清楚为什么是这样 作用域是什么 定义的变量存储在哪里?程序是如何找到变量的?实现的 规则就是作用域 传统编译语言执行前的编译三步骤(p5) ...
- 【hbase0.96】基于hadoop搭建hbase的心得
hbase是基于hadoop的hdfs框架做的分布式表格存储系统,所谓表格系统就是在k/v系统的基础上,对value部分支持column family和column,并支持多版本读写. hbase的工 ...
- ueditor的配置和使用
ueditor下载好之后直接复制到项目的WebContent目录下,并将ueditor\jsp\lib下的jar包复制或者剪切到项目的lib目录下.先看一下效果,如下: 1.文件的上传 首先在uedi ...
- iOS开发之微信聊天工具栏的封装
之前山寨了一个新浪微博(iOS开发之山寨版新浪微博小结),这几天就山寨个微信吧.之前已经把微信的视图结构简单的拖了一下(IOS开发之微信山寨版),今天就开始给微信加上具体的实现功能,那么就先从微信的聊 ...
- 关于MyCAT字符集的验证
MyCAT默认字符集是UTF8 下面通过查看日志来验证不同的MySQL客户端字符集和服务器字符集对于MyCAT的影响. 日志中与字符集有关的主要有三部分: 1. 初始化MyCAT连接池 2. 心跳检测 ...
- (九)WebGIS中的矢量查询(针对AGS和GeoServer)
文章版权由作者李晓晖和博客园共有,若转载请于明显处标明出处:http://www.cnblogs.com/naaoveGIS/. 1.前言 在第七章里我们知道了WebGIS中要素的本质是UICompo ...