2019HDU多校第7场——构造
题意
假设现在你在准备考试,明天的考试有 $n$ 道题目,对于分值为 $i$ 的题目至少复习 $i+1$ 小时才能做对,已知总分为$m$,求确保完成 $k$ 道题的最少时间。
分析
手动尝试一下,发现答案都是 $aabbbb$ 这样的形式。例如,
$5 \ 18 \ 3 \Rightarrow 6 \ 6 \ 7 \ 7 \ 7,$
$5 \ 19 \ 3 \Rightarrow 6 \ 7 \ 7 \ 7 \ 7,$
$5 \ 20 \ 3 \Rightarrow 7 \ 7 \ 7 \ 7 \ 7,$
即用前面小的去消耗 $m$,剩下的 $k$ 确保能做对。
构造:先使前 $n-k+1$ 消耗 $m+1$,取前面的最大值填充后 $k-1$ 个。
注意开long long!!!
#include<bits/stdc++.h>
using namespace std; typedef long long ll;
ll n, m ,k; int main()
{
int T;
scanf("%d", &T);
while(T--)
{
scanf("%lld%lld%lld", &n, &m, &k);
int tmp = (m+) / (n-k+);
if((m+ - tmp * (n-k+))) tmp++;
printf("%lld\n", (m+) + tmp*(k-));
}
return ;
}
2019HDU多校第7场——构造的更多相关文章
- 2019HDU多校第六场1009 Three Investigators——杨表
题意 给定一个 n 个元素的数列,从前 k 个元素中取5次不下降子序列,求取得的和的最大值(k从1至n) 分析 考虑将数字 a[i] 拆成 a[i] 个 a[i],比如 “4,1,2”→“4,4,4, ...
- 2019HDU多校第六场 6641 TDL——乱搞&&思维题
题意 设 $f(n, m)$ 为大于 $n$ 且与 $n$ 互质的数中第 $m$ 小的数,求满足 $(f(n, m) - n) \oplus n = k$ 的最小正整数 $n$ 分析 因为 $m \l ...
- 2019HDU多校第五场A fraction —— 辗转相除法|类欧几里得
题目 设 $ab^{-1} = x(mod \ p)$,给出 $x,p$,要求最小的 $b$,其中 $0< a < b, \ 1 < x<p,\ 3 \leq x\leq {1 ...
- 2019HDU多校第四场 K-th Closest Distance ——主席树&&二分
题意 给定 $n$ 个数,接下来有 $q$ 次询问,每个询问的 $l, r, p, k$ 要异或上一次的答案,才是真正的值(也就是强制在线).每次询问,输出 $[l, r]$ 内第 $k$ 小的 $| ...
- 2019HDU多校第四场 Just an Old Puzzle ——八数码有解条件
理论基础 轮换与对换 概念:把 $S$ 中的元素 $i_1$ 变成 $i_2$,$i_2$ 变成 $i_3$ ... $i_k$ 又变成 $i_1$,并使 $S$ 中的其余元素保持不变的置换称为循环, ...
- 2019HDU多校第三场F Fansblog——威尔逊定理&&素数密度
题意 给定一个整数 $P$($10^9 \leq p\leq 1^{14}$),设其前一个质数为 $Q$,求 $Q! \ \% P$. 分析 暴力...说不定好的板子能过. 根据威尔逊定理,如果 $ ...
- 2019HDU多校第三场 K subsequence——最小费用最大流
题意 给定一个 $n$ 个整数的数列,从中至多选取 $k$ 个上升子序列(一个元素最多被选一次),使得选取的元素和最大. 分析 考虑这个问题和经典网络流问题“最长不下降子序列”相似,我们考虑对这个建图 ...
- [2019HDU多校第五场][HDU 6626][C. geometric problem]
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=6626 题目大意:给出平面上六个点\(A,B,M,N,X,Y\)以及两条直线\(L1,L2\),要求在四 ...
- [2019HDU多校第四场][HDU 6617][D. Enveloping Convex]
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=6617 题目大意:给出一凸包\(P\),求最小的与\(P\)相似且对应边平行的多边形,使得题目给出的\( ...
随机推荐
- ajax后台跳转无效的原因
Ajax只是利用脚本访问对应url获取数据而已,不能做除了获取返回数据以外的其它动作了.所以浏览器端是不会发起重定向的. 1)正常的http url请求,只有浏览器和服务器两个参与者.浏览器端发起一个 ...
- python 之 数据库(数据库安装方法、基本sql语句、存储引擎)
第十章 数据库 10.1 数据库介绍 1.数据库相关概念 数据库服务器:本质就是一个台计算机,该计算机之上安装有数据库管理软件的服务端 数据库管理系统RDBMS:本质就是一个C/S架构的套接字软件 库 ...
- mongodb 启动及创建用户
1. 守护进程启动,参考: https://blog.csdn.net/jj546630576/article/details/81117765 2. 用户管理参考: https://www.cnbl ...
- golang开发:环境篇(五)实时加载工具gin的使用
gin 工具是golang开发中非常有用且有效的工具,有效的提高了开发调试go程序的效率. 为什么要使用gin 我们知道golang是编译型语言,这就表示go程序的每次改动,如果需要查看改动结果都必须 ...
- Python yield 使用浅析【转】
Python yield 使用浅析 IBM developerWorks 中国 : Open source IBM 开源 - IBM Developer 中国 (原 developerWorks 中国 ...
- ReflectionTest:由输入的类名得到类的信息
package reflection; import java.lang.reflect.*; import java.util.*; public class ReflectionTest { pu ...
- mdk编译时的内存分析
内存四区(代码区,全局区,栈区,堆区) Code:即代码域,它指的是编译器生成的机器指令,这些内容被存储到ROM区. RO-data:Read Only data,即只读数据域,它指程序中用到的只读数 ...
- 第2章 NIO入门
2.1 传统的BIO编程 以服务器为例,在传统BIO模型下的服务器,每当一个新的请求到来的时候回分配一个线程去处理该请求,并且该线程在执行IO操作的时候会一直阻塞,知道IO操作完成或抛出异常才会返回. ...
- 数据库中间件之mycat读写分离
mycat核心概念 逻辑库 mycat中定义.管理的数据库 逻辑表 逻辑库中包含的需分库分表存储的表 datanode 数据节点(分片节点),逻辑表分片的存放节点 datahost 数据主机(节点主机 ...
- ajax实现文件上传,多文件上传,追加参数
1.html部分实现代码: <!DOCTYPE html> <html> <head> <meta charset="UTF-8"> ...