https://leetcode-cn.com/problems/longest-increasing-subsequence/solution/dong-tai-gui-hua-she-ji-fang-fa-zhi-pai-you-xi-jia/

描述

给定一个无序的整数数组,找到其中最长上升子序列的长度。

示例:

输入: [10,9,2,5,3,7,101,18]
输出: 4
解释: 最长的上升子序列是 [2,3,7,101],它的长度是 4。
说明:

可能会有多种最长上升子序列的组合,你只需要输出对应的长度即可。
你算法的时间复杂度应该为 O(n2) 。
进阶: 你能将算法的时间复杂度降低到 O(n log n) 吗?

解析

动态规划

本文讲一种设计动态规划的通用技巧:数学归纳思想。

动态规划的核心设计思想是数学归纳法。

相信大家对数学归纳法都不陌生,高中就学过,而且思路很简单。比如我们想证明一个数学结论,那么我们先假设这个结论在 k<n 时成立,然后想办法证明 k=n 的时候此结论也成立。如果能够证明出来,那么就说明这个结论对于 k 等于任何数都成立。

类似的,我们设计动态规划算法,不是需要一个 dp 数组吗?我们可以假设 dp[0...i-1] 都已经被算出来了,然后问自己:怎么通过这些结果算出 dp[i]?

直接拿最长递增子序列这个问题举例你就明白了。不过,首先要定义清楚 dp 数组的含义,即 dp[i] 的值到底代表着什么?

我们的定义是这样的:dp[i] 表示以 nums[i] 这个数结尾的最长递增子序列的长度。

动态规划的重头戏是,要思考如何进行状态转移,这里就可以使用数学归纳的思想:

我们已经知道了 dp[0...4] 的所有结果,我们如何通过这些已知结果推出 dp[5]呢?

根据刚才我们对 dp 数组的定义,现在想求 dp[5] 的值,也就是想求以 nums[5] 为结尾的最长递增子序列。

nums[5] = 3,既然是递增子序列,我们只要找到前面那些结尾比 3 小的子序列,然后把 3 接到最后,就可以形成一个新的递增子序列,而且这个新的子序列长度加一。

当然,可能形成很多种新的子序列,但是我们只要最长的,把最长子序列的长度作为 dp[5] 的值即可。

还有一个细节问题,dp 数组应该全部初始化为 1,因为子序列最少也要包含自己,所以长度最小为 1。

二分

上面链接

代码

public int lengthOfLIS(int[] nums) {
if (null == nums || nums.length <= 0) {
return 0;
}
int len = nums.length;
int[] dp = new int[len];
for (int i = 0; i < len; i++) {
dp[i] = 1;
}
int res = 1;//当数组只有1个数,最小长度就是1
for (int i = 1; i < len; i++) {
for (int j = 0; j < i; j++) {
if (nums[j] < nums[i]) {
dp[i] = Math.max(dp[i], dp[j] + 1);
res = Math.max(res, dp[i]);
}
}
}
return res;
}

[LeetCode] 300. 最长上升子序列 ☆☆☆(动态规划 二分)的更多相关文章

  1. Java实现 LeetCode 300 最长上升子序列

    300. 最长上升子序列 给定一个无序的整数数组,找到其中最长上升子序列的长度. 示例: 输入: [10,9,2,5,3,7,101,18] 输出: 4 解释: 最长的上升子序列是 [2,3,7,10 ...

  2. LeetCode 300. 最长上升子序列(Longest Increasing Subsequence)

    题目描述 给出一个无序的整形数组,找到最长上升子序列的长度. 例如, 给出 [10, 9, 2, 5, 3, 7, 101, 18], 最长的上升子序列是 [2, 3, 7, 101],因此它的长度是 ...

  3. LeetCode 300——最长上升子序列

    1. 题目 2. 解答 2.1. 动态规划 我们定义状态 state[i] 表示以 nums[i] 为结尾元素的最长上升子序列的长度,那么状态转移方程为: \[state[i] = max(state ...

  4. leetcode 300最长上升子序列

    用递归DFS遍历所有组合肯定积分会超时,原因是有很多重复的操作,可以想象每次回溯后肯定会有重复操作.所以改用动态规划.建立一个vector<int>memo,初始化为1,memo[i]表示 ...

  5. Leetcode——300. 最长上升子序列

    题目描述:题目链接 给定一个无序的整数数组,找到其中最长上升子序列的长度. 示例: 输入: [10,9,2,5,3,7,101,18] 输出: 4 解释: 最长的上升子序列是 [2,3,7,101], ...

  6. Leetcode 300.最长上升子序列

    最长上升子序列 给定一个无序的整数数组,找到其中最长上升子序列的长度. 示例: 输入: [10,9,2,5,3,7,101,18] 输出: 4 解释: 最长的上升子序列是 [2,3,7,101],它的 ...

  7. Luogu 3402 最长公共子序列(二分,最长递增子序列)

    Luogu 3402 最长公共子序列(二分,最长递增子序列) Description 经过长时间的摸索和练习,DJL终于学会了怎么求LCS.Johann感觉DJL孺子可教,就给他布置了一个课后作业: ...

  8. 1. 线性DP 300. 最长上升子序列 (LIS)

    最经典单串: 300. 最长上升子序列 (LIS) https://leetcode-cn.com/problems/longest-increasing-subsequence/submission ...

  9. 【LeetCode】300.最长递增子序列——暴力递归(O(n^3)),动态规划(O(n^2)),动态规划+二分法(O(nlogn))

    算法新手,刷力扣遇到这题,搞了半天终于搞懂了,来这记录一下,欢迎大家交流指点. 题目描述: 给你一个整数数组 nums ,找到其中最长严格递增子序列的长度. 子序列是由数组派生而来的序列,删除(或不删 ...

随机推荐

  1. k8s记录-etcd集群部署(三)

    https://blog.csdn.net/fy_long/article/details/86542872 1)程序准备tar xvf etcd-v3.3.11-linux-amd64.tar.gz ...

  2. 123457123456#2#----com.MC.HuiHuaGame33--前拼后广--画画填色Game-mc

    com.MC.HuiHuaGame33--前拼后广--画画填色Game-mc

  3. 有哪些可能的原因导致BDE死掉啊啊,求救了,谢谢

    一个服务程序在后台跑,用到了BDE访问SQLServer,隔了一段时间就会莫名其妙的与数据库连接失败,查了一下BDE,发现已经死掉了,bde administrator也无法打开,报错,重启或注销机器 ...

  4. 给APK签名,修改签名

    简介: 本来是不需要签名的,但是我有个android的专用设备,限制安装,但是售后给我通过了一个证书的验证. 那么我想装什么软件,就需要这个证书验证. 现在记录一下签名的主要过程,还有修改签名的方法. ...

  5. sublime text 3 前端开发常用插件

    sublime text 3 前端开发常用插件 https://packagecontrol.io/browse 代码对齐: Alignment html代码补全:  Emmet CoffeeScri ...

  6. Keil MDK仿真调试STM32的时候直接进入SystemInit函数

    1. 仿真的时候,进入之后 2. 说是main()未定义,可是明明定义了,什么原因?喔,看错了,是--main.对比了一下和正常工厂的配置,都一样,换个jlink V9测试一下吧.换了个ST LINK ...

  7. 管道式编程(Pipeline Style programming)

    受 F# 中的管道运算符和 C# 中的 LINQ 语法,管道式编程为 C# 提供了更加灵活性的功能性编程.通过使用 扩展函数 可以将多个功能连接起来构建成一个管道. 前言 在 C# 编程中,管道式编程 ...

  8. 第07组 Alpha冲刺(4/4)

    队名:秃头小队 组长博客 作业博客 组长徐俊杰 过去两天完成的任务:学习了很多东西 Github签入记录 接下来的计划:继续学习 还剩下哪些任务:后端部分 燃尽图 遇到的困难:自己太菜了 收获和疑问: ...

  9. docker安装MongoDB创建用户,并用工具Robo连接简单CRUD

    搜索mongo docker search mongo 拉取mongo[这里默认为latest] docker pull mongo 查看本地镜像 启动容器[就是安装,-v后面的参数表示把数据文件挂载 ...

  10. 《ucore lab7》实验报告

    资源 ucore在线实验指导书 我的ucore实验代码 练习1: 理解内核级信号量的实现和基于内核级信号量的哲学家就餐问题(不需要编码) 题目 完成练习0后,建议大家比较一下(可用meld等文件dif ...