[LeetCode] 300. 最长上升子序列 ☆☆☆(动态规划 二分)
描述
给定一个无序的整数数组,找到其中最长上升子序列的长度。
示例:
输入: [10,9,2,5,3,7,101,18]
输出: 4
解释: 最长的上升子序列是 [2,3,7,101],它的长度是 4。
说明:
可能会有多种最长上升子序列的组合,你只需要输出对应的长度即可。
你算法的时间复杂度应该为 O(n2) 。
进阶: 你能将算法的时间复杂度降低到 O(n log n) 吗?
解析
动态规划
本文讲一种设计动态规划的通用技巧:数学归纳思想。
动态规划的核心设计思想是数学归纳法。
相信大家对数学归纳法都不陌生,高中就学过,而且思路很简单。比如我们想证明一个数学结论,那么我们先假设这个结论在 k<n 时成立,然后想办法证明 k=n 的时候此结论也成立。如果能够证明出来,那么就说明这个结论对于 k 等于任何数都成立。
类似的,我们设计动态规划算法,不是需要一个 dp 数组吗?我们可以假设 dp[0...i-1] 都已经被算出来了,然后问自己:怎么通过这些结果算出 dp[i]?
直接拿最长递增子序列这个问题举例你就明白了。不过,首先要定义清楚 dp 数组的含义,即 dp[i] 的值到底代表着什么?
我们的定义是这样的:dp[i] 表示以 nums[i] 这个数结尾的最长递增子序列的长度。
动态规划的重头戏是,要思考如何进行状态转移,这里就可以使用数学归纳的思想:
我们已经知道了 dp[0...4] 的所有结果,我们如何通过这些已知结果推出 dp[5]呢?
根据刚才我们对 dp 数组的定义,现在想求 dp[5] 的值,也就是想求以 nums[5] 为结尾的最长递增子序列。
nums[5] = 3,既然是递增子序列,我们只要找到前面那些结尾比 3 小的子序列,然后把 3 接到最后,就可以形成一个新的递增子序列,而且这个新的子序列长度加一。
当然,可能形成很多种新的子序列,但是我们只要最长的,把最长子序列的长度作为 dp[5] 的值即可。
还有一个细节问题,dp 数组应该全部初始化为 1,因为子序列最少也要包含自己,所以长度最小为 1。
二分
上面链接
代码
public int lengthOfLIS(int[] nums) {
if (null == nums || nums.length <= 0) {
return 0;
}
int len = nums.length;
int[] dp = new int[len];
for (int i = 0; i < len; i++) {
dp[i] = 1;
}
int res = 1;//当数组只有1个数,最小长度就是1
for (int i = 1; i < len; i++) {
for (int j = 0; j < i; j++) {
if (nums[j] < nums[i]) {
dp[i] = Math.max(dp[i], dp[j] + 1);
res = Math.max(res, dp[i]);
}
}
}
return res;
}
[LeetCode] 300. 最长上升子序列 ☆☆☆(动态规划 二分)的更多相关文章
- Java实现 LeetCode 300 最长上升子序列
300. 最长上升子序列 给定一个无序的整数数组,找到其中最长上升子序列的长度. 示例: 输入: [10,9,2,5,3,7,101,18] 输出: 4 解释: 最长的上升子序列是 [2,3,7,10 ...
- LeetCode 300. 最长上升子序列(Longest Increasing Subsequence)
题目描述 给出一个无序的整形数组,找到最长上升子序列的长度. 例如, 给出 [10, 9, 2, 5, 3, 7, 101, 18], 最长的上升子序列是 [2, 3, 7, 101],因此它的长度是 ...
- LeetCode 300——最长上升子序列
1. 题目 2. 解答 2.1. 动态规划 我们定义状态 state[i] 表示以 nums[i] 为结尾元素的最长上升子序列的长度,那么状态转移方程为: \[state[i] = max(state ...
- leetcode 300最长上升子序列
用递归DFS遍历所有组合肯定积分会超时,原因是有很多重复的操作,可以想象每次回溯后肯定会有重复操作.所以改用动态规划.建立一个vector<int>memo,初始化为1,memo[i]表示 ...
- Leetcode——300. 最长上升子序列
题目描述:题目链接 给定一个无序的整数数组,找到其中最长上升子序列的长度. 示例: 输入: [10,9,2,5,3,7,101,18] 输出: 4 解释: 最长的上升子序列是 [2,3,7,101], ...
- Leetcode 300.最长上升子序列
最长上升子序列 给定一个无序的整数数组,找到其中最长上升子序列的长度. 示例: 输入: [10,9,2,5,3,7,101,18] 输出: 4 解释: 最长的上升子序列是 [2,3,7,101],它的 ...
- Luogu 3402 最长公共子序列(二分,最长递增子序列)
Luogu 3402 最长公共子序列(二分,最长递增子序列) Description 经过长时间的摸索和练习,DJL终于学会了怎么求LCS.Johann感觉DJL孺子可教,就给他布置了一个课后作业: ...
- 1. 线性DP 300. 最长上升子序列 (LIS)
最经典单串: 300. 最长上升子序列 (LIS) https://leetcode-cn.com/problems/longest-increasing-subsequence/submission ...
- 【LeetCode】300.最长递增子序列——暴力递归(O(n^3)),动态规划(O(n^2)),动态规划+二分法(O(nlogn))
算法新手,刷力扣遇到这题,搞了半天终于搞懂了,来这记录一下,欢迎大家交流指点. 题目描述: 给你一个整数数组 nums ,找到其中最长严格递增子序列的长度. 子序列是由数组派生而来的序列,删除(或不删 ...
随机推荐
- Spring cloud微服务安全实战-6-1本章概述
这一章来讲一下,微服务之间的通讯安全. 当前这个架构还存在的问题 在网关上做限流还是有一些问题的.例如我的订单服务限流是100,库存服务限流也是100.但是我的订单服务会调用我的库存服务.那么在网关这 ...
- 报错:The specified datastore driver ("com.mysql.jdbc.Driver") was not found in the CLASSPATH. Please check your CLASSPATH specification, and the name of the driver.
报错背景: CDH中集成hive插件,启动报错. 报错现象: [main]: Metastore Thrift Server threw an exception... javax.jdo.JDOFa ...
- npm publish 一直报错 404
在封装 zswui react ui 组件库的时候,尝试了下 github的 packages 包设置,然后就给自己挖坑了. zswui 这是一个从零开始配置,实现组件开发测试的项目. 因为设置 ...
- sklearn简单线性回归
from sklearn import datasetsfrom sklearn.model_selection import train_test_splitfrom sklearn.linear_ ...
- 【Leetcode_easy】917. Reverse Only Letters
problem 917. Reverse Only Letters solution: class Solution { public: string reverseOnlyLetters(strin ...
- Python文件的读取写入操作
一.打开文件.关闭文件操作 想要读取文件或是写入文件,第一步便是打开文件,最后一步便是关闭文件.这里介绍两种打开(关闭)文件的方式: 1.open()方法 f=open(file_name[,acce ...
- cordon、drain、delete node区别
cordon.drain.delete node区别 主要目的:导致node处于不可调度状态,新创建的pod容器不会调度在node上. cordon将node置为SchedulingDisabled不 ...
- github账户初始化设置
1.首先在github官网https://github.com/上注册自己的账户: 2.去git官网https://git-scm.com/downloads,根据电脑系统下载合适的版本并安装. 3. ...
- 各种软件安装的URL
Python爬虫动态抓取的工具 PhantomJS
- Echart timeline 高级用法!!!!
一.前言 在使用 echart timeline 来着图形可视化时,我使用的和官网也不一样,因为我有使用映射关系.比如我将 no 映射到X轴,将 d4 映射到Y轴. 二.参考 echart官网:htt ...