思路:悬线法\(or\)单调栈

提交:2次

错因:正方形面积取错了\(QwQ\)

题解:

悬线法

讲解:王知昆\(dalao\)的\(PPT\)

详见代码:

#include<cstdio>
#include<iostream>
#define ull unsigned long long
#define ll long long
#define R register int
using namespace std;
#define pause (for(R i=1;i<=10000000000;++i))
#define In freopen("NOIPAK++.in","r",stdin)
#define Out freopen("out.out","w",stdout)
namespace Fread {
static char B[1<<15],*S=B,*D=B;
#ifndef JACK
#define getchar() (S==D&&(D=(S=B)+fread(B,1,1<<15,stdin),S==D)?EOF:*S++)
#endif
inline int g() {
R ret=0,fix=1; register char ch; while(!isdigit(ch=getchar())) fix=ch=='-'?-1:fix;
if(ch==EOF) return EOF; do ret=ret*10+(ch^48); while(isdigit(ch=getchar())); return ret*fix;
} inline bool isempty(const char& ch) {return (ch<=36||ch>=127);}
inline void gs(char* s) {
register char ch; while(isempty(ch=getchar()));
do *s++=ch; while(!isempty(ch=getchar()));
}
} using Fread::g; using Fread::gs;
namespace Luitaryi {
const int N=4010;
int n,m,a[N][N],l[N][N],r[N][N],h[N][N],S1,S2;
inline void main() {
n=g(),m=g();
for(R i=1;i<=n;++i) for(R j=1;j<=m;++j) a[i][j]=g(),l[i][j]=r[i][j]=j,h[i][j]=1;//刚开始令悬线长度为1,左右边界都是本身。
for(R i=1;i<=n;++i) for(R j=2;j<=m;++j) if(a[i][j]!=a[i][j-1]) l[i][j]=l[i][j-1];//在悬线长度为1时,尝试扩大左右边界
for(R i=1;i<=n;++i) for(R j=m-1; j;--j) if(a[i][j]!=a[i][j+1]) r[i][j]=r[i][j+1];
for(R i=1;i<=n;++i) for(R j=1;j<=m;++j) {
if(i>1) if(a[i][j]!=a[i-1][j]) {//若颜色不相等,尝试合并悬线。
l[i][j]=max(l[i][j],l[i-1][j]),//左端点往大取
r[i][j]=min(r[i][j],r[i-1][j]),//右端点往小取
h[i][j]=h[i-1][j]+1;//悬线长度+1
} R a=r[i][j]-l[i][j]+1,b=min(a,h[i][j]);
S1=max(S1,b*b),S2=max(S2,a*h[i][j]);//计算面积
} printf("%d\n%d\n",S1,S2);
}
}
signed main() {
Luitaryi::main(); return 0;
}

单调栈

其实单调栈我没有写,但是教练给的标签是单调栈。。。然后稍微想了想又看了看题解\(QwQ\)

以下引用自@luogu.org lzoi_lhy

从第一行到第n行扫一遍,维护h数组表示从当前格子往上能延伸到的黑白相间的线段(有一条边长为1的矩形)的最长长度

我们可将当前行分为若干条线段,满足每条线段是最长的黑白相间的线段(不能再向左右延伸)

对于每条线段,结合h数组,我们不难发现我们得到了一排高矮不一的长条状的矩形

是不是很熟悉?用单调栈扫一遍即可

如果遇到颜色与上一个相同的格子,就把整个栈弹出来

注意正方形可以在数矩形的时候顺便数出来

#include<cstdio>
#include<iostream>
#include<cstring>
#define X (h[stack[top]])//矩形的宽
#define Y (cur-stack[top-1]-1)//矩形的长
#define Z (min(X,Y))//正方形的边长
using namespace std;
int n,m,top,cur,ans1,ans2,stack[2010],map[2010][2010],h[2010];
int main()
{
scanf("%d%d",&n,&m);
for (int i=1;i<=n;++i)
for (int j=1;j<=m;++j) scanf("%d",&map[i][j]);
for (int j=1;j<=n;++j){
for (int i=1;i<=m;++i)
if (j>1&&map[j][i]!=map[j-1][i]) ++h[i];
else h[i]=1;
cur=1;
while (cur<=m){
stack[0]=cur-1;stack[top=1]=cur++;
while (cur<=m&&(map[j][cur]!=map[j][cur-1])){
while (top&&h[stack[top]]>h[cur])
ans1=max(ans1,Z*Z),ans2=max(ans2,X*Y),--top;
stack[++top]=cur++;
}
while (top) ans1=max(ans1,Z*Z),ans2=max(ans2,X*Y),--top;
}
}
printf("%d\n%d\n",ans1,ans2);
return 0;
}

2019.07.22

P1169 [ZJOI2007]棋盘制作 悬线法or单调栈的更多相关文章

  1. P1169 [ZJOI2007]棋盘制作 && 悬线法

    P1169 [ZJOI2007]棋盘制作 给出一个 \(N * M\) 的 \(01\) 矩阵, 求最大的正方形和最大的矩形交错子矩阵 \(n , m \leq 2000\) 悬线法 悬线法可以求出给 ...

  2. 洛谷P1169 [ZJOI2007]棋盘制作 悬线法 动态规划

    P1169 [ZJOI2007]棋盘制作 (逼着自己做DP 题意: 给定一个包含0,1的矩阵,求出一个面积最大的正方形矩阵和长方形矩阵,要求矩阵中相邻两个的值不同. 思路: 悬线法. 用途: 解决给定 ...

  3. P1169 [ZJOI2007]棋盘制作[悬线法/二维dp]

    题目描述 国际象棋是世界上最古老的博弈游戏之一,和中国的围棋.象棋以及日本的将棋同享盛名.据说国际象棋起源于易经的思想,棋盘是一个8 \times 88×8大小的黑白相间的方阵,对应八八六十四卦,黑白 ...

  4. P1169 [ZJOI2007]棋盘制作——悬线法

    ---恢复内容开始--- 给你一个矩阵,选出最大的棋盘,棋盘的要求是黑白相间(01不能相邻),求出最大的正方形和矩形棋盘的面积: 数据n,m<=2000; 这个一看就可能是n2DP,但是写不出. ...

  5. BZOJ 1057: [ZJOI2007]棋盘制作 悬线法求最大子矩阵+dp

    1057: [ZJOI2007]棋盘制作 Description 国际象棋是世界上最古老的博弈游戏之一,和中国的围棋.象棋以及日本的将棋同享盛名.据说国际象棋起源于易经的思想,棋盘是一个8*8大小的黑 ...

  6. [ZJOI2007]棋盘制作 悬线法dp 求限制下的最大子矩阵

    https://www.luogu.org/problemnew/show/P1169 第一次听说到这种dp的名称叫做悬线法,听起来好厉害 题意是求一个矩阵内的最大01交错子矩阵,开始想的是dp[20 ...

  7. [P1169] 棋盘制作 &悬线法学习笔记

    学习笔记 悬线法 最大子矩阵问题: 在一个给定的矩形中有一些障碍点,找出内部不包含障碍点的,边与整个矩形平行或重合的最大子矩形. 极大子矩型:无法再向外拓展的有效子矩形 最大子矩型:最大的一个有效子矩 ...

  8. 【ZJOI2007】棋盘制作 - 悬线法

    题目描述 国际象棋是世界上最古老的博弈游戏之一,和中国的围棋.象棋以及日本的将棋同享盛名.据说国际象棋起源于易经的思想,棋盘是一个 \(8 \times 8\) 大小的黑白相间的方阵,对应八八六十四卦 ...

  9. 【BZOJ-3039&1057】玉蟾宫&棋盘制作 悬线法

    3039: 玉蟾宫 Time Limit: 2 Sec  Memory Limit: 128 MBSubmit: 753  Solved: 444[Submit][Status][Discuss] D ...

随机推荐

  1. PHP基础之函数

    函数概念: 函数是用来完成某种特定任务的可重用代码块; 函数可以使程序更具模块化,拥有良好的结构; 函数定义后在程序中可以重复调用; 函数分为内置函数和自定义函数 考点: 变量的作用域和静态变量 延伸 ...

  2. Python【HTML基础】

    HTML基础 HTML(Hyper Text Markup Language)超文本标记语言 #HTML是一种用来描述网页的语言,HTML之于网页就好比建筑图纸之于建筑 +++++++++++++++ ...

  3. python第四天---元组和字典的魔法

    # 元组,元素不可以更改.增加.删除 # 元组的第一级元素不可修改.删除.增加 # 一般写元组是,最后加上逗号 tu = (123, "wdsd", 213, (213, 213) ...

  4. (转)js-分享功能(qq,微信,微博)

    //1 分享QQ好友 function qq(title,url,pic)     {         var p = {             url: 'http://test.qicheyit ...

  5. aliplay获取播放时长

    <div id="player-con" class="frequency-pic"></div> <link rel=" ...

  6. (十七)Hibnernate 和 Spring 整合

    一.Hibnernate 和 Spring结合方案: 方案一:  框架各自使用自己的配置文件,Spring中加载Hibernate的配置文件. 方案二:   统一由Spring的配置来管理.(推荐使用 ...

  7. WebSocket协议探究(序章)

    一 WebSocket协议基于HTTP和TCP协议 与往常一样,进入WebSocket协议学习之前,先进行WebSocket协议抓包,来一个第一印象. WebSocket能实现客户端和服务器间双向.基 ...

  8. jquery 获取滚动条高度

    获取浏览器显示区域的高度 : $(window).height(); 获取浏览器显示区域的宽度 :$(window).width(); 获取页面的文档高度 :$(document).height(); ...

  9. eclipse设置各种编码

    https://blog.csdn.net/qq_32786873/article/details/81910022

  10. Servlet实现图片读取显示

    1.导入jar包:commons-io-1.4.jar 2.index.jsp: <%@ page language="java" import="java.uti ...