利用Python进行数据分析_Pandas_绘图和可视化_Matplotlib
1 认识Figure和Subplot
import matplotlib.pyplot as plt
matplotlib的图像都位于Figure对象中
fg = plt.figure()
通过add_subplot创建subplot
ax1 = fg.add_subplot(1,2,1)
ax2 = fg.add_subplot(1,2,2)
设置坐标轴的范围
plt.xlim((-1, 1))
plt.ylim((0, 3))
设置坐标轴的lable
matplotlib.pyplot.xlabel(xlabel, fontdict=None, labelpad=None, **kwargs)
plt.xlabel('横轴:时间', fontproperties = 'SimHei', fontsize = 15, color = 'green')
plt.ylabel('纵轴:振幅', fontproperties = 'SimHei', fontsize = 15)
plt.figure()的作用
如下例子中,plt.subplot()如果不加,则4个图都在同一个figure对象汇总,而加上plt.subplot(),则每个图分别在一个figure对象中
import matplotlib.pyplot as plt
import pandas as pd
from numpy.random import randn x = np.linspace(-1, 1, 50) y1 = 2 * x + 1
# plt.figure()
ax1 = plt.subplot(4,2,1)
ax1.plot(x, y1) y2 = x**2
# plt.figure()
ax2 = plt.subplot(4,2,2)
ax2.plot(x, y2) y3 = 2*x+1
# plt.figure()
ax3 = plt.subplot(4,2,3)#plt.subplot(3,2,4) : 分成3行2列,共6个绘图区域,在第4个区域绘图。排序为行优先。也可 plt.subplot(324),将逗号省略。
ax3.plot(x, y3) y4 = x**2
# plt.figure()
ax4 = plt.subplot(4,2,4)
ax4.plot(x, y4) plt.show()
plt的常用函数
plt.scatter#(数据,点的大小) 绘制单个点 plt.show()# 显示出来 plt.title #(名字,大小) plt.xlable() plt.ylable() plt.tick_params()#设置刻度的大小 plt.axis([0,1100,0,111000]) # 设置坐标轴的取值范围 plt.scatter(x_values, y_values, c=y_values, cmap=plt.cm.Blues,
edgecolor='none', s=40) # 把颜色设置为一个动态的变量,并使用cmp高数pylot使用哪个颜色的映射 plt.savefig(“squares_plot.png”,bbox_inches = "tight")# 第一个参数指定要以什么样的文件名保存图表,第二个参数指定将图标多余的空白区域裁掉 plt.axes().get_xaxis().set_visible(false)# 使x轴不可见 plt.figure(figsize = (10,6)) # 设置绘图窗口的尺寸
plt的图表函数
plt.plot(x,y , fmt) :绘制坐标图 plt.boxplot(data, notch, position): 绘制箱形图 plt.bar(left, height, width, bottom) : 绘制条形图 plt.barh(width, bottom, left, height) : 绘制横向条形图 plt.polar(theta, r) : 绘制极坐标图 plt.pie(data, explode) : 绘制饼图 plt.scatter(x, y) :绘制散点图 plt.hist(x, bings, normed) : 绘制直方图
fig,axes = plt.subplots()
import numpy as np
import matplotlib.pyplot as plt
fig,axes = plt.subplots(2,3)
plt.subplots_adjust(wspace=0,hspace=0)# wspace控制宽度百分比,hspace控制高度的百分比,用作subplot之间的距离
axes[1,2]

import numpy as np
import matplotlib.pyplot as plt
x = np.linspace(0, 2*np.pi, 400)
y = np.sin(x**2) fig,axes = plt.subplots(2,3)
plt.subplots_adjust(wspace=0,hspace=0)# wspace控制宽度百分比,hspace控制高度的百分比,用作subplot之间的距离
axes[1,2].plot(x,y)
plt.show()

颜色、标记、线型
详见:API文档
axes.plot(x,y,'g--')
Colors

Markers

Line Styles

刻度、标签、图例
plt.xlim() #返回当前的X轴的范围
plt.xlim(0,10)#设置当前的X轴的范围
修改X轴刻度
import numpy as np
import matplotlib.pyplot as plt plt.figure()
ax = plt.subplot()
ax.plot(randn(1000).cumsum())
# ax.set_xticks([0,250,500,750,1000])
ax.set_xticklabels(['1w','2w','3w','4w','5w','6w','7w'],rotation=30,fontsize='small') ax.set_title('Test plot!') plt.show()

import numpy as np
import matplotlib.pyplot as plt plt.figure() #创建figure对象 ax = plt.subplot() # 一张图中 传入多个元素,需要传入label参数
ax.plot(randn(1000).cumsum(),'g--',label='180210.IB',)
ax.plot(randn(1000).cumsum(),'c.',label='170201.IB',)
ax.plot(randn(1000).cumsum(),'m:',label='180201.IB',) # ax.legend(loc='best') # 添加图例(左上角那玩意)
plt.legend(loc='best') # 添加图例(左上角那玩意) ax.set_title('Test plot!') #设置图标的标题
plt.savefig('D:\Test plot.svg')
plt.savefig('D:\Test plot.pdf')
plt.savefig('D:\Test plot.jpg')
plt.savefig('D:\Test plot.png',dpi=400,bbox_inches = 'tight') #保存png格式,dpi 分辨率,bbox_inches 最小白边
plt.show()

利用Python进行数据分析_Pandas_绘图和可视化_Matplotlib的更多相关文章
- 利用python进行数据分析之绘图和可视化
matplotlib API入门 使用matplotlib的办法最常用的方式是pylab的ipython,pylab模式还会向ipython引入一大堆模块和函数提供一种更接近与matlab的界面,ma ...
- 利用Python进行数据分析_Pandas_数据加载、存储与文件格式
申明:本系列文章是自己在学习<利用Python进行数据分析>这本书的过程中,为了方便后期自己巩固知识而整理. 1 pandas读取文件的解析函数 read_csv 读取带分隔符的数据,默认 ...
- 利用Python进行数据分析_Pandas_层次化索引
申明:本系列文章是自己在学习<利用Python进行数据分析>这本书的过程中,为了方便后期自己巩固知识而整理. 层次化索引主要解决低纬度形式处理高纬度数据的问题 import pandas ...
- 利用Python进行数据分析_Pandas_处理缺失数据
申明:本系列文章是自己在学习<利用Python进行数据分析>这本书的过程中,为了方便后期自己巩固知识而整理. 1 读取excel数据 import pandas as pd import ...
- 利用Python进行数据分析_Pandas_汇总和计算描述统计
申明:本系列文章是自己在学习<利用Python进行数据分析>这本书的过程中,为了方便后期自己巩固知识而整理. In [1]: import numpy as np In [2]: impo ...
- 利用Python进行数据分析_Pandas_基本功能
申明:本系列文章是自己在学习<利用Python进行数据分析>这本书的过程中,为了方便后期自己巩固知识而整理. 第一 重新索引 Series的reindex方法 In [15]: obj = ...
- 利用Python进行数据分析_Pandas_数据结构
申明:本系列文章是自己在学习<利用Python进行数据分析>这本书的过程中,为了方便后期自己巩固知识而整理. 首先,需要导入pandas库的Series和DataFrame In [21] ...
- 利用Python进行数据分析_Pandas_数据清理、转换、合并、重塑
1 合并数据集 pandas.merge pandas.merge(left, right, how='inner', on=None, left_on=None, right_on=None, le ...
- 绘图和可视化知识图谱-《利用Python进行数据分析》
所有内容整理自<利用Python进行数据分析>,使用MindMaster Pro 7.3制作,emmx格式,源文件已经上传Github,需要的同学转左上角自行下载或者右击保存图片. 其他章 ...
随机推荐
- python map() 的使用方法
>>>def square(x) : # 计算平方数 ... ... >>> map(square, [,,,,]) # 计算列表各个元素的平方 [, , , , ...
- docker搭建hadoop HA出错问题总结记录。
错误1: ssh连接云主机: ssh root@39.106.xx.xx 报错:THE AUTHENTICITY OF HOST XX CAN’T BE ESTABLISHED 解决办法: ssh - ...
- ShardingSphere Hint模式 SpringBoot + Mybatis
ShardingSphere Hint模式不需要对sql进行解析,就可以进行数据库或者表的路由.下面贴一下代码,关于SpringBoot + Mybatis + ShardingSphere怎样结合. ...
- CF293E Close Vertice
如果没有边数限制就是裸的淀粉质,如果有了加上一个树状数组记边数就行了. #include<stdio.h> #include<stdlib.h> #include<str ...
- 深入了解JVM虚拟机8:Java的编译期优化与运行期优化
java编译期优化 java语言的编译期其实是一段不确定的操作过程,因为它可以分为三类编译过程:1.前端编译:把.java文件转变为.class文件2.后端编译:把字节码转变为机器码3.静态提前编译: ...
- 备份的数据库文件(500M左右)无法导入的解决方法
解决方法: 修改配置文件/usr/local/mysql/my.cnf 在my.cnf文件下添加一句:max_allowed_packet=900M 注:此处大小不能设置过大,过大可能会导致还原过程中 ...
- pl/sql test Window 参数为date
好久没写笔记了,感觉颓废了,原因是工作忙,休息时间人也变懒了,好了不说了:今天需要记录一下plsql打开测试窗口测试存储过程时,入参为date格式时报的异常 本以为和sql一样处理就可以,但是报异常, ...
- linux和window下生成任意大小的文件
在Windows环境下的实现方法 使用fsutil命令,在windows xp和win 7下应该都自带了这个命令.命令的格式是 fsutil file createnew 新文件名 文件大小.例如 ...
- 亚马逊AWS服务器CentOS/Linux系统Shell安装Nginx及配置自启动
领了一个亚马逊的1年免费服务器,今天尝试安装 Nginx 服务器,使用原生的 Shell 方法. 为了方便以后查看,就把过程记录一下. 注意:亚马逊(AWS)服务器默认只能用 user-ec2 账户进 ...
- springmvc配置mybatis与hibernate的不同点
相信每个人对springmvc+hibernate或者springmvc+mybatis都不会陌生,拿来一个项目也都会开发.但是自己配置的情况下却很少,即使自己配置过,长时间不写也会忘,在这里记录一下 ...