【概率论】3-7:多变量分布(Multivariate Distributions Part II)
title: 【概率论】3-7:多变量分布(Multivariate Distributions Part II)
categories:
- Mathematic
- Probability
keywords: - Conditional Distributions
- 条件分布
- Bayes’ Theorem
- 贝叶斯理论
- Histograms
- 直方图
- Law of total Probability
- 全概率公式
toc: true
date: 2018-03-15 09:20:38

Abstract: 本文继续上文的内容,讲解多变量分布的条件分布,全概率公式和贝叶斯公式。提出直方图的概念。
Keywords: Conditional Distributions,Law of Total Probability,Bayes’ Theorem,Histograms
开篇废话
向往自由的人更懂得约束自己,约束自己的行为,自由自己的思想,而我们现在周围的人更多的是反过来的,约束自己的思想,告诉自己不许瞎想,但是自由自己的行为,想干嘛干嘛,毕竟改革开放的红利使得大部分人从温饱过渡到有车有房还可以随意出门旅游看看世界了,而思维思想,包括知识,还停留在改革开放之前,这就导致了很诡异的一系列行为–有钱没文化。
本文继续上文,将前面的内容扩展至多变量的联合分布,最后引出关于直方图的一些知识。
Conditional Distributions
条件概率,是3.6中讲解的内容,我们反复的强调所有概率都是条件概率,所有分布也都是条件分布,所以与其说条件概率(分布)与一般的概率(分布)行为一致,不如说所有的所有的行为都是在条件概率的基础上进行的,只是我们省略了某些必然达成的条件。
假设 nnn 个随机变量 X1,…,XnX_1,\dots,X_nX1,…,Xn 有一个连续的联合分布,其联合分布式p.d.f. 是 fff 并且 f0f_0f0 定义了其中 k<nk < nk<n 个随机变量的边缘分布有 f0(x1,…,xn)>0f_0(x_1,\dots,x_n) > 0f0(x1,…,xn)>0 那么条件分布,当条件 X1=x1,…Xn=xnX_1=x_1,\dots X_n=x_nX1=x1,…Xn=xn 给定时 (xk+1,…,xn)(x_{k+1},\dots,x_n)(xk+1,…,xn) 的p.d.f.是:
gk+1,…,xn(xk+1,…,xn∣x1,…,xk)=f(x1,…,xn)f0(x1,…,xk)
g_{k+1,\dots,x_n}(x_{k+1},\dots,x_{n}|x_1,\dots,x_k)=\frac{f(x_1,\dots ,x_n)}{f_0(x_1,\dots,x_k)}
gk+1,…,xn(xk+1,…,xn∣x1,…,xk)=f0(x1,…,xk)f(x1,…,xn)
Definition 3.3.7 Conditional p.f. or p.d.f. Suppose that the random vector X⃗=(X1,…,Xn)\vec{X}=(X_1,\dots,X_n)X=(X1,…,Xn) is divided into two subvectors Y⃗\vec{Y}Y and Z⃗\vec{Z}Z ,where Y⃗\vec{Y}Y is a k-dimensional random vector comprising kkk of the nnn random variables in X⃗\vec{X}X and Z⃗\vec{Z}Z is an (n−k)(n-k)(n−k)-dimensional random vector comprising the other n−kn-kn−k random variables in X⃗\vec{X}X .Suppose also that the nnn-dimensional joint p.f. or p.d.f. of (Y⃗,Z⃗)(\vec{Y},\vec{Z})(Y,Z) is fff and that the marginal (n−k)(n-k)(n−k)-dimensional joint p.f. ,p.d.f. or p.f./p.d.f. of Z⃗\vec{Z}Z is f2f_2f2 .Then for every given point z∈Rn−kz\in\mathbb{R}^{n-k}z∈Rn−k such that f2(z)>0f_2(z)>0f2(z)>0 ,the conditional kkk-dimensional p.f. p.d.f.or p.f./p.d.f. g1g_1g1 of Y⃗\vec{Y}Y given Z⃗=z⃗\vec{Z}=\vec{z}Z=z is defined as follows:
g1(y⃗∣z⃗)=f(y⃗,z⃗)f2(z⃗) for y⃗∈Rk
g_1(\vec{y}|\vec{z})=\frac{f(\vec{y},\vec{z})}{f_2(\vec{z})} \text{ for }\vec{y}\in \mathbb{R}^k
g1(y∣z)=f2(z)f(y,z) for y∈Rk
这就是完整的定义,抄一遍下来还真写了不少字,但是整个思路很清晰,首先就是把多变量形成向量的形式,再把向量拆成两个小的空间当然上面这个定义的公式也可以写成:
f(y⃗,z⃗)=g1(y⃗∣z⃗)f2(z⃗)
f(\vec{y},\vec{z})=g_1(\vec{y}|\vec{z}) f_2(\vec{z})
f(y,z)=g1(y∣z)f2(z)
写成乘法原理的形式,解决分母是0的尴尬局面。也可以看出,通过条件分布和边缘分布得到联合分布的方法是正确的(乘法原理的正确性)。
以上为节选内容,完整原文地址:https://www.face2ai.com/Math-Probability-3-7-Multivariate-Distributions-P2转载请标明出处
【概率论】3-7:多变量分布(Multivariate Distributions Part II)的更多相关文章
- 【概率论】3-7:多变量分布(Multivariate Distributions Part I)
title: [概率论]3-7:多变量分布(Multivariate Distributions Part I) categories: Mathematic Probability keywords ...
- 【概率论】5-6:正态分布(The Normal Distributions Part II)
title: [概率论]5-6:正态分布(The Normal Distributions Part II) categories: - Mathematic - Probability keywor ...
- 【概率论】5-9:多项式分布(The Multinomial Distributions)
title: [概率论]5-9:多项式分布(The Multinomial Distributions) categories: - Mathematic - Probability keywords ...
- 【概率论】5-8:Beta分布(The Beta Distributions)
title: [概率论]5-8:Beta分布(The Beta Distributions) categories: - Mathematic - Probability keywords: - Th ...
- 【概率论】5-7:Gama分布(The Gamma Distributions Part II)
title: [概率论]5-7:Gama分布(The Gamma Distributions Part II) categories: - Mathematic - Probability keywo ...
- 【概率论】5-7:Gama分布(The Gamma Distributions Part I)
title: [概率论]5-7:Gama分布(The Gamma Distributions Part I) categories: - Mathematic - Probability keywor ...
- 【概率论】5-6:正态分布(The Normal Distributions Part I)
title: [概率论]5-6:正态分布(The Normal Distributions Part I) categories: - Mathematic - Probability keyword ...
- 【概率论】5-6:正态分布(The Normal Distributions Part III)
title: [概率论]5-6:正态分布(The Normal Distributions Part III) categories: - Mathematic - Probability keywo ...
- 【概率论】3-6:条件分布(Conditional Distributions Part II)
title: [概率论]3-6:条件分布(Conditional Distributions Part II) categories: Mathematic Probability keywords: ...
随机推荐
- python几个轻量级web框架
python几个轻量级web框架 2016-04-11 18:04:34 惹不起的程咬金 阅读数 7944更多 分类专栏: 云计算/大数据/并行计算 Python 我最近发表了一篇名为 ‘7 Mi ...
- 扩展kmp入门+比赛模板
https://wenku.baidu.com/view/8e9ebefb0242a8956bece4b3.html 参考了这个ppt 理解起来还是有点费劲的(还是推荐一下这个课件 里面概念和思路给的 ...
- 简单标签(SimpleTag) 学习
一.由于传统标签使用三个标签接口来完成不同的功能,显得过于繁琐,不利于标签技术的推广, SUN公司为降低标签技术的学习难度,在JSP 2.0中定义了一个更为简单.便于编写和调用的SimpleTag接口 ...
- Eureka服务注册于发现之Client搭建
Eureka在Server端的搭建已经有很多介绍的文章,同时也是学习Eureka的第一步. 搭建好注册中心后怎么进行服务注册和服务调用,是我们要讲的主要内容. 开发环境:IDEA2018.3+Spri ...
- java毫秒级别定时器
java每100毫秒执行一次 //每100毫秒秒执行一次 @Scheduled(fixedRate = 100) public void testScheduler() { System.out.pr ...
- 六、TreeMap的使用 及其源码解析
TreeMap中的元素默认按照keys的自然排序排列 1. 构造函数TreeMap(): 创建一个空的TreeMap ,keys按照自然排序TreeMap(Comparator comparator) ...
- css图片上加文字
第一种方法: 添加一个DIV,采用绝对定位,图片所属DIV为基准 <div style="position:relative;width:100px;height:100px;&quo ...
- 6.Java集合-LinkedList实现原理及源码分析
Java中LinkedList的部分源码(本文针对1.7的源码) LinkedList的基本结构 jdk1.7之后,node节点取代了 entry ,带来的变化是,将1.6中的环形结构优化为了直线型链 ...
- vue中用div的contenteditable属性实现v-for遍历,双向数据绑定的动态表格编辑
1.HTML部分 <tr v-for="(item,index) in customerVisitList2" :key="index"> < ...
- 【异常】java.sql.SQLException: Could not retrieve transaction read-only status from server Query
1 详细异常 java.sql.SQLException: Could not retrieve transaction read-only status , ], [ChargingOrderRea ...