题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=4283

自己想了很久还是不会,参考了别人的思路才写的,区间DP还是很弱,继续努力!!

思路:

转载:

题解:想dp[i][j]表示[i ,j]内的unhappiness最小值,枚举k(i<=k<j),有两种情况需要讨论:
          1 如果[i , k]区间内的人全部在[k+1, j]区间内的人之前出列,且已经全部不在栈中,即[i , j]区间可以分为[i , k] , [k+1 ,j]两个完全相同的子问题,
             即dp[i][j] =MIN(dp[i][j] , dp[i][k] + dp[k+1][j] + (sum[j] – sum[i]) * (k – i +1));
          2 如果[i , k]区间内的人全部在[k+1 , j]区间内的人之后出列,即[i , k]区间内的人全部需要进栈,所以出来的顺序是逆序的,需O(n2)预处理出against_order[i][j]
             表示[i , j]区间人逆序出来的unhappiness值,即dp[i][j] = MIN(dp[i][j] , dp[k+1][j] + against_order[i][k] + (sum[k]– sum[i-1]) * (j - k));

我用了记忆化搜索和迭代两种方式实现,主要是为了加深自己的理解和记忆

记忆化搜索代码 :

 #include<iostream>
#include<cstdlib>
#include<cstdio>
#include<cstring>
using namespace std;
#define INF 1000010111
int n;
int a[];
int dp[][];
int sum[];
int order[][];
void Make_order()
{
memset(order,,sizeof(order));
for(int j=;j<=n;j++)
for(int i=j-;i>=;i--)
order[i][j]=order[i+][j]+a[i]*(j-i); }
int dfs(int i,int j)
{
if(dp[i][j]<INF) return dp[i][j];
if(i==j) return dp[i][j]=;
for(int k=i;k<j;k++)
dp[i][j]=min(dp[i][j],min(dfs(i,k)+dfs(k+,j)+(sum[j]-sum[k])*(k-i+),dp[k+][j]+order[i][k]+(sum[k]-sum[i-])*(j-k)));
return dp[i][j];
}
int main()
{
int t;
scanf("%d",&t);
int tol=;
while(t--)
{
sum[]=;
scanf("%d",&n);
for(int i=;i<=n;i++)
{
scanf("%d",&a[i]);
sum[i]=sum[i-]+a[i];
}
Make_order();
for(int i=;i<;i++)
for(int j=;j<;j++)
dp[i][j]=INF;
cout<<"Case #"<<tol++<<": "<<dfs(,n)<<endl;
} }

迭代代码:

 #include<iostream>
#include<cstdlib>
#include<cstdio>
#include<cstring>
using namespace std;
#define INF 100001000
int dp[][];
int a[];
int sum[];
int order[][];
int n;
void init()
{
scanf("%d",&n);
sum[]=;
for(int i=;i<=n;i++)
{
scanf("%d",&a[i]);
sum[i]=sum[i-]+a[i];
}
for(int i=;i<;i++)
for(int j=i;j<;j++)
if(i==j) dp[i][j]=;
else dp[i][j]=INF;
memset(order,,sizeof(order));
for(int j=;j<=n;j++)
for(int i=j-;i>=;i--)
order[i][j]=order[i+][j]+a[i]*(j-i);
} int main()
{
int t;
int tol=;
scanf("%d",&t);
while(t--)
{
init();
for(int j=;j<=n;j++)
for(int i=j-;i>=;i--)
{
for(int k=i;k<j;k++)
dp[i][j]=min(dp[i][j],min(dp[i][k]+dp[k+][j]+(sum[j]-sum[k])*(k-i+),dp[k+][j]+order[i][k]+(sum[k]-sum[i-])*(j-k)));
}
cout<<"Case #"<<tol++<<": "<<dp[][n]<<endl;
}
return ; }

hdu4283 You Are the One 区间DP的更多相关文章

  1. HDU4283 You Are the One —— 区间DP

    题目链接:https://vjudge.net/problem/HDU-4283 You Are the One Time Limit: 2000/1000 MS (Java/Others)    M ...

  2. hdu-4283 You Are the One 区间dp,

    题意:n个人排队上台,每个人有一屌丝值D,他的不满意值=D*(k-1)(k为他前面的总人数). 求整个队列不满意值之和的最小值.你只有一个操作,就是把队首的人塞进小黑屋,也就是压入栈中,后面的人就被提 ...

  3. hdu4283 区间dp

    //Accepted 300 KB 0 ms //区间dp //dp[i][j] 表示i到j第一个出场的最小diaosizhi //对于i到j考虑元素i //(1)i第一个出场,diaosizhi为 ...

  4. HDU4283:You Are the One(区间DP)

    Problem Description The TV shows such as You Are the One has been very popular. In order to meet the ...

  5. 【BZOJ-4380】Myjnie 区间DP

    4380: [POI2015]Myjnie Time Limit: 40 Sec  Memory Limit: 256 MBSec  Special JudgeSubmit: 162  Solved: ...

  6. 【POJ-1390】Blocks 区间DP

    Blocks Time Limit: 5000MS   Memory Limit: 65536K Total Submissions: 5252   Accepted: 2165 Descriptio ...

  7. 区间DP LightOJ 1422 Halloween Costumes

    http://lightoj.com/volume_showproblem.php?problem=1422 做的第一道区间DP的题目,试水. 参考解题报告: http://www.cnblogs.c ...

  8. BZOJ1055: [HAOI2008]玩具取名[区间DP]

    1055: [HAOI2008]玩具取名 Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 1588  Solved: 925[Submit][Statu ...

  9. poj2955 Brackets (区间dp)

    题目链接:http://poj.org/problem?id=2955 题意:给定字符串 求括号匹配最多时的子串长度. 区间dp,状态转移方程: dp[i][j]=max ( dp[i][j] , 2 ...

随机推荐

  1. 任务调用及远端管理(基于Quartz.net)

    这篇文章我们来了解一些项目中的一个很重要的功能:任务调度 可能有些同学还不了解这个,其实简单点说任务调度与数据库中的Job是很相似的东西 只不过是运行的物理位置与管理方式有点不一样,从功能上来说我觉得 ...

  2. iOS 内存泄漏

      我一直以为现在都是自动内存管理了,还哪有什么内存泄漏啊.一检测才知道,不是我太相信Xcode了,就是我太单纯了.iOS开发中遇到的内存泄漏主要有几下几种: (1)对象不能释放.使用Core Fou ...

  3. flask框架+pygal+sqlit3搭建图形化业务数据分析平台

    一. 前言 先说下主要的框架和主要的图形库的特点:(个人见解) Django:python开发的一个重量级的web框架,集成了MVC和ORM等技术,设计之初是为了使开发复杂的.数据库驱动的网站变得简单 ...

  4. 【Egret】3d 服务器配置

    在服务器MIME里添加这些类型就可以了:

  5. Combination Sum系列问题

    主要使用方法是backtracking. Combination Sum Given a set of candidate numbers (C) and a target number (T), f ...

  6. C# Task 源代码阅读(1)

    平时我们开发中,经常使用Task,后续的.net版本种很多都和Task有关,比如asyn,await有了Task 我们很少就去关注Thread 了.Task 给我们带来了很多的便利之处.是我们更少的去 ...

  7. Asp.NetCore之组件写法

    本章内容和大家分享的是Asp.NetCore组件写法,在netcore中很多东西都以提供组件的方式来使用,比如MVC架构,Session,Cache,数据库引用等: 这里我也通过调用验证码接口来自定义 ...

  8. Python Selenium设计模式-POM

    前言 本文就python selenium自动化测试实践中所需要的POM设计模式进行分享,以便大家在实践中对POM的特点.应用场景和核心思想有一定的理解和掌握. 为什么要用POM 基于python s ...

  9. Hibernate(三)之配置文件详解

    一.核心配置文件(hibernate.cfg.xml) <?xml version="1.0" encoding="UTF-8"?> <!DO ...

  10. Android 开发之开发插件使用:Eclipse 插件 SQLiteManger eclipse中查看数据内容--翻译

    最近研究了一段时间Android开发后发现,google自带的ADT工具,缺失一些开发常用的东西,希望可以构建一个类似使用JAVA EE开发体系一样开发的工具包集合,包括前台开发,调试,到后台数据库的 ...