An express train to reveries
Sengoku still remembers the mysterious "colourful meteoroids" she discovered with Lala-chan when they were little. In particular, one of the nights impressed her deeply, giving her the illusion that all her fancies would be realized.
On that night, Sengoku constructed a permutation p1, p2, ..., pn of integers from 1 to n inclusive, with each integer representing a colour, wishing for the colours to see in the coming meteor outburst. Two incredible outbursts then arrived, each with n meteorids, colours of which being integer sequences a1, a2, ..., an and b1, b2, ..., bn respectively. Meteoroids' colours were also between 1 and ninclusive, and the two sequences were not identical, that is, at least one i (1 ≤ i ≤ n) exists, such that ai ≠ bi holds.
Well, she almost had it all — each of the sequences a and b matched exactly n - 1 elements in Sengoku's permutation. In other words, there is exactly one i (1 ≤ i ≤ n) such that ai ≠ pi, and exactly one j (1 ≤ j ≤ n) such that bj ≠ pj.
For now, Sengoku is able to recover the actual colour sequences a and b through astronomical records, but her wishes have been long forgotten. You are to reconstruct any possible permutation Sengoku could have had on that night.
The first line of input contains a positive integer n (2 ≤ n ≤ 1 000) — the length of Sengoku's permutation, being the length of both meteor outbursts at the same time.
The second line contains n space-separated integers a1, a2, ..., an (1 ≤ ai ≤ n) — the sequence of colours in the first meteor outburst.
The third line contains n space-separated integers b1, b2, ..., bn (1 ≤ bi ≤ n) — the sequence of colours in the second meteor outburst. At least one i (1 ≤ i ≤ n) exists, such that ai ≠ bi holds.
Output n space-separated integers p1, p2, ..., pn, denoting a possible permutation Sengoku could have had. If there are more than one possible answer, output any one of them.
Input guarantees that such permutation exists.
5
1 2 3 4 3
1 2 5 4 5
1 2 5 4 3
5
4 4 2 3 1
5 4 5 3 1
5 4 2 3 1
4
1 1 3 4
1 4 3 4
1 2 3 4
In the first sample, both 1, 2, 5, 4, 3 and 1, 2, 3, 4, 5 are acceptable outputs.
In the second sample, 5, 4, 2, 3, 1 is the only permutation to satisfy the constraints.
题解:
题目描述有一点恶心,先讲一讲题意。
说白了就是给你两个数列a和b,要你找一个数列c,使得c与a和b都最多只有一个不同的数,这就是为什么第二组样例只能有一组解的原因。
思路就是一个一个找a和b相同的数直接放到c中,然后分别试一试两种情况就可以了。
#include<iostream>
#include<cstdio>
#include<cstring>
#include<cstdlib>
#include<cmath>
#include<algorithm>
#include<queue>
#include<ctime>
#include<stack>
#include<vector>
using namespace std;
int n,a[],b[],c[],vis[];
int cnt1,cnt2,cnt3,cnt4;
int main()
{
int i,j;
scanf("%d",&n);
for(i=; i<=n; i++)
{
scanf("%d",&a[i]);
}
for(i=; i<=n; i++)
{
scanf("%d",&b[i]);
}
memset(c,-,sizeof(c));
for(i=; i<=n; i++)
{
if(a[i]==b[i])
{
if(!vis[a[i]])
{
c[i]=a[i];
vis[a[i]]=;
}
}
}
for(i=; i<=n; i++)
{
if(c[i]==-)
{
if(!cnt1)cnt1=i;
else
{
cnt2=i;
break;
}
}
}
for(i=; i<=n; i++)
{
if(!vis[i])
{
if(!cnt3)cnt3=i;
else
{
cnt4=i;
break;
}
}
}
if(!cnt2)c[cnt1]=cnt3;
else
{
int ans1=,ans2=;
if(a[cnt1]!=cnt3)ans1++;
if(b[cnt1]!=cnt3)ans1++;
if(a[cnt2]!=cnt4)ans2++;
if(b[cnt2]!=cnt4)ans2++;
if(ans1==&&ans2==)
{
c[cnt1]=cnt3;
c[cnt2]=cnt4;
}
else
{
c[cnt2]=cnt3;
c[cnt1]=cnt4;
}
} for(i=; i<=n; i++)
cout<<c[i]<<' ';
return ;
}
An express train to reveries的更多相关文章
- B. An express train to reveries
B. An express train to reveries time limit per test 1 second memory limit per test 256 megabytes inp ...
- Codeforces Round #418 (Div. 2) B. An express train to reveries
time limit per test 1 second memory limit per test 256 megabytes input standard input output standar ...
- codeforces 814B.An express train to reveries 解题报告
题目链接:http://codeforces.com/problemset/problem/814/B 题目意思:分别给定一个长度为 n 的不相同序列 a 和 b.这两个序列至少有 i 个位置(1 ≤ ...
- Codeforces - 814B - An express train to reveries - 构造
http://codeforces.com/problemset/problem/814/B 构造题烦死人,一开始我还记录一大堆信息来构造p数列,其实因为s数列只有两项相等,也正好缺了一项,那就把两种 ...
- CF814B An express train to reveries
思路: 模拟,枚举. 实现: #include <iostream> using namespace std; ; int a[N], b[N], cnt[N], n, x, y; int ...
- #418 Div2 Problem B An express train to reveries (构造 || 全排列序列特性)
题目链接:http://codeforces.com/contest/814/problem/B 题意 : 有一个给出两个含有 n 个数的序列 a 和 b, 这两个序列和(1~n)的其中一个全排列序列 ...
- Codeforces Round #418 (Div. 2) A+B+C!
终判才知道自己失了智.本场据说是chinese专场,可是请允许我吐槽一下题意! A. An abandoned sentiment from past shabi贪心手残for循环边界写错了竟然还过了 ...
- codeforces round 418 div2 补题 CF 814 A-E
A An abandoned sentiment from past 水题 #include<bits/stdc++.h> using namespace std; int a[300], ...
- AtCoder Express(数学+二分)
D - AtCoder Express Time limit : 2sec / Memory limit : 256MB Score : 400 points Problem Statement In ...
随机推荐
- js 检测浏览器
首先还是IE浏览器的检测,一般我们在写代码的时候,出现的兼容性bug几乎都来自IE.从IE10以后,IE还算有点良心,支持了大部门的CSS3及H5的新特性.那么在IE10之前呢,就要才去别的手段来代替 ...
- npm 常用命令详解
本文以Windows平台上做测试,以gulp为示例做教程,出自作者白树,转载请声明出处! 目录 npm是什么 npm install 安装模块 npm uninstall 卸载模块 npm updat ...
- 基于webpack2.x的vue2.x的多页面站点
vue的多页面 依旧使用vue-cli来初始化我们的项目 然后修改主要目录结构如下: ├── build │ ├── build.js │ ├── check-versions.js │ ...
- WEB服务器如何选择 Apache or Nginx?
Web服务器是直接影响网站性能的关键因素,也是每个站长选择网站运营环境时必然考虑的问题.目前Web服务器市场产品众多,最为主流和代表性的当属Apache.Nginx以及微软的IIS.本文目的是通过Ap ...
- Linux下链接数据库图形化工具
(一).Linux环境下mysql的安装.SQL操作 Linux下安装MySQL (rmp --help) 基本步骤:上传软件->检查当前Linux环境是否已经安装,如发现系统自带的,先卸载-& ...
- vue2.0实践 —— Node + vue 实现移动官网
简介 使用 Node + vue 对公司的官网进行了一个简单的移动端的实现. 源码 https://github.com/wx1993/node-vue-fabaocn 效果 组件 轮播图(使用 vu ...
- MACD指标
MACD(Moving Average Convergence)平滑异同移动平均线 MACD指标有双移动平均线发展而来,由快速移动平均线减去慢速移动平均线,当MACD从负数转向证书,是买入信号,从正数 ...
- 利用gulp搭建简单服务器,gulp标准版
var gulp = require('gulp'), autoprefixer = require('gulp-autoprefixer'), //自动添加css前缀 rename = requir ...
- python小工具:用python操作HP的Quality Center
背景是这样的:这个组的测试人员每跑一个case都要上传测试结果附件到QC.每个待测功能模块可能包含几十上百的case.于是手工上传测试结果变成了繁重的体力劳动.令人惊讶的是我们的工具开发组竟然说做不了 ...
- git常用命令记录
配置本地仓库 git config --global user.name.git config --global user.email 查看配置详情 git config -l 初始仓库 git in ...