An express train to reveries
time limit per test 1 second
memory limit per test 256 megabytes
input standard input
output standard output

Sengoku still remembers the mysterious "colourful meteoroids" she discovered with Lala-chan when they were little. In particular, one of the nights impressed her deeply, giving her the illusion that all her fancies would be realized.

On that night, Sengoku constructed a permutation p1, p2, ..., pn of integers from 1 to n inclusive, with each integer representing a colour, wishing for the colours to see in the coming meteor outburst. Two incredible outbursts then arrived, each with n meteorids, colours of which being integer sequences a1, a2, ..., an and b1, b2, ..., bn respectively. Meteoroids' colours were also between 1 and ninclusive, and the two sequences were not identical, that is, at least one i (1 ≤ i ≤ n) exists, such that ai ≠ bi holds.

Well, she almost had it all — each of the sequences a and b matched exactly n - 1 elements in Sengoku's permutation. In other words, there is exactly one i (1 ≤ i ≤ n) such that ai ≠ pi, and exactly one j (1 ≤ j ≤ n) such that bj ≠ pj.

For now, Sengoku is able to recover the actual colour sequences a and b through astronomical records, but her wishes have been long forgotten. You are to reconstruct any possible permutation Sengoku could have had on that night.

Input

The first line of input contains a positive integer n (2 ≤ n ≤ 1 000) — the length of Sengoku's permutation, being the length of both meteor outbursts at the same time.

The second line contains n space-separated integers a1, a2, ..., an (1 ≤ ai ≤ n) — the sequence of colours in the first meteor outburst.

The third line contains n space-separated integers b1, b2, ..., bn (1 ≤ bi ≤ n) — the sequence of colours in the second meteor outburst. At least one i (1 ≤ i ≤ n) exists, such that ai ≠ bi holds.

Output

Output n space-separated integers p1, p2, ..., pn, denoting a possible permutation Sengoku could have had. If there are more than one possible answer, output any one of them.

Input guarantees that such permutation exists.

Examples
input
5
1 2 3 4 3
1 2 5 4 5
output
1 2 5 4 3
input
5
4 4 2 3 1
5 4 5 3 1
output
5 4 2 3 1
input
4
1 1 3 4
1 4 3 4
output
1 2 3 4
Note

In the first sample, both 1, 2, 5, 4, 3 and 1, 2, 3, 4, 5 are acceptable outputs.

In the second sample, 5, 4, 2, 3, 1 is the only permutation to satisfy the constraints.

题解:

题目描述有一点恶心,先讲一讲题意。

说白了就是给你两个数列a和b,要你找一个数列c,使得c与a和b都最多只有一个不同的数,这就是为什么第二组样例只能有一组解的原因。

思路就是一个一个找a和b相同的数直接放到c中,然后分别试一试两种情况就可以了。

#include<iostream>
#include<cstdio>
#include<cstring>
#include<cstdlib>
#include<cmath>
#include<algorithm>
#include<queue>
#include<ctime>
#include<stack>
#include<vector>
using namespace std;
int n,a[],b[],c[],vis[];
int cnt1,cnt2,cnt3,cnt4;
int main()
{
int i,j;
scanf("%d",&n);
for(i=; i<=n; i++)
{
scanf("%d",&a[i]);
}
for(i=; i<=n; i++)
{
scanf("%d",&b[i]);
}
memset(c,-,sizeof(c));
for(i=; i<=n; i++)
{
if(a[i]==b[i])
{
if(!vis[a[i]])
{
c[i]=a[i];
vis[a[i]]=;
}
}
}
for(i=; i<=n; i++)
{
if(c[i]==-)
{
if(!cnt1)cnt1=i;
else
{
cnt2=i;
break;
}
}
}
for(i=; i<=n; i++)
{
if(!vis[i])
{
if(!cnt3)cnt3=i;
else
{
cnt4=i;
break;
}
}
}
if(!cnt2)c[cnt1]=cnt3;
else
{
int ans1=,ans2=;
if(a[cnt1]!=cnt3)ans1++;
if(b[cnt1]!=cnt3)ans1++;
if(a[cnt2]!=cnt4)ans2++;
if(b[cnt2]!=cnt4)ans2++;
if(ans1==&&ans2==)
{
c[cnt1]=cnt3;
c[cnt2]=cnt4;
}
else
{
c[cnt2]=cnt3;
c[cnt1]=cnt4;
}
} for(i=; i<=n; i++)
cout<<c[i]<<' ';
return ;
}

An express train to reveries的更多相关文章

  1. B. An express train to reveries

    B. An express train to reveries time limit per test 1 second memory limit per test 256 megabytes inp ...

  2. Codeforces Round #418 (Div. 2) B. An express train to reveries

    time limit per test 1 second memory limit per test 256 megabytes input standard input output standar ...

  3. codeforces 814B.An express train to reveries 解题报告

    题目链接:http://codeforces.com/problemset/problem/814/B 题目意思:分别给定一个长度为 n 的不相同序列 a 和 b.这两个序列至少有 i 个位置(1 ≤ ...

  4. Codeforces - 814B - An express train to reveries - 构造

    http://codeforces.com/problemset/problem/814/B 构造题烦死人,一开始我还记录一大堆信息来构造p数列,其实因为s数列只有两项相等,也正好缺了一项,那就把两种 ...

  5. CF814B An express train to reveries

    思路: 模拟,枚举. 实现: #include <iostream> using namespace std; ; int a[N], b[N], cnt[N], n, x, y; int ...

  6. #418 Div2 Problem B An express train to reveries (构造 || 全排列序列特性)

    题目链接:http://codeforces.com/contest/814/problem/B 题意 : 有一个给出两个含有 n 个数的序列 a 和 b, 这两个序列和(1~n)的其中一个全排列序列 ...

  7. Codeforces Round #418 (Div. 2) A+B+C!

    终判才知道自己失了智.本场据说是chinese专场,可是请允许我吐槽一下题意! A. An abandoned sentiment from past shabi贪心手残for循环边界写错了竟然还过了 ...

  8. codeforces round 418 div2 补题 CF 814 A-E

    A An abandoned sentiment from past 水题 #include<bits/stdc++.h> using namespace std; int a[300], ...

  9. AtCoder Express(数学+二分)

    D - AtCoder Express Time limit : 2sec / Memory limit : 256MB Score : 400 points Problem Statement In ...

随机推荐

  1. xmlplus 组件设计系列之十 - 网格(DataGrid)

    这一章我们要实现是一个网格组件,该组件除了最基本的数据展示功能外,还提供排序以及数据过滤功能. 数据源 为了测试我们即将编写好网格组件,我们采用如下格式的数据源.此数据源包含两部分的内容,分别是表头数 ...

  2. Nginx 反向代理&负载均衡

    1.反向代理 当我们请求一个网站时,nginx会决定由哪台服务器提供服务,就是反向代理. nginx只做请求的转发,后台有多个tomcat服务器提供服务,nginx的功能就是把请求转发给后面的服务器, ...

  3. mysql5.6源码自动安装脚本

    将脚本与源码安装包放在同一目录下,执行脚本即可(执行脚本会使用yum安装依赖包) 安装完成之后,既可以使用mysql -uroot -p登录   脚本内容如下: [root@mysql src]# c ...

  4. linux用户和组的创建与管理!

    useradd创建用户,usermod修改用户属性,userdel删除用户,groupadd创建组,groupmod修改组属性,groupdel删除组. 创建用户命令:useradd 语法: user ...

  5. JavaScript常用的方法和函数(setInterval和setTimeout)

    1.setInterval:计时器 可以按照指定的周期(以毫秒为单位)来调用函数或计算表达式 调用格式:setinterval(fun,time) 说明:fun为函数体,time为数值,这两个参数是必 ...

  6. 如何实现在Windows上运行Linux程序,附示例代码

    微软在去年发布了Bash On Windows, 这项技术允许在Windows上运行Linux程序, 我相信已经有很多文章解释过Bash On Windows的原理, 而今天的这篇文章将会讲解如何自己 ...

  7. jQuery选择器的分类

    jQuery选择器的分类 jQuery中有很多分类,大类分为四类,四类里面又分为很多小类,下面就为大家一一介绍,这些选择器的使用和好处,Me用的是jQuery1.8.3的版本 选择器都有哪四类?? 1 ...

  8. 快速傅里叶变换(FFT)算法【详解】

    快速傅里叶变换(Fast Fourier Transform)是信号处理与数据分析领域里最重要的算法之一.我打开一本老旧的算法书,欣赏了JW Cooley 和 John Tukey 在1965年的文章 ...

  9. 生成简单的php验证码

    之前发表过,但是上面只是一个截图,不便于大家复制和使用,所以在这重新发表一遍. <?php //生成验证码图片 Header("Content-type: image/JPEG&quo ...

  10. python中的map、filter、reduce函数

    三个函数比较类似,都是应用于序列的内置函数.常见的序列包括list.tuple.str.   1.map函数 map函数会根据提供的函数对指定序列做映射. map函数的定义: map(function ...