一、人脸对齐基本概念

人脸对齐通过人脸关键点检测得到人脸的关键点坐标,然后根据人脸的关键点坐标调整人脸的角度,使人脸对齐,由于输入图像的尺寸是大小不一的,人脸区域大小也不相同,角度不一样,所以要通过坐标变换,对人脸图像进行归一化操作。人脸关键点检测有很多算法可以使用包括:ASM、AAM、DCNN 、TCDCN 、MTCNN 、TCNN、TCNN等,这里就不详细介绍,主要说一下得到人脸关键点之后如何进行人脸对齐,使所有人脸达到归一化效果,该过程如下图所示:

二、3D空间中的变换方式

欧氏变换:最简单的变换,它保持了向量的长度和夹角,相当于把一个刚体原封不动的移动或者旋转。

相似变换:比欧氏变换多一个自由度,它允许对物体进行均匀的缩放。

防射变换:又叫正交投影,经过变换后,立方体不再是方的,但是各个面仍是平行四边形。

射影变换:最一般的变换。例如使用相机随意拍摄一个方形的地板砖,在照片中的样子,它不再是方的,由于远近不同,甚至不再是平行四边形。如果焦距无穷远,则为仿射变换。

变换方式 矩阵 不变性质

欧氏变换

6dof

长度
夹角
体积

相似变换

7dof

体积比

仿射变换

12dof

平行性
体积比

射影变换

15dof

接触平面的相交和相切

三、对齐在图像领域的应用

(1)、人脸器官定位、器官跟踪。通过人脸对齐,我们能够定位到人脸的每个部件,提取相应的部件特征。

(2)、表情识别。通过人脸对齐后,我们能够利用对齐后的人脸形状分析人脸的表情状态。

(3)、人脸漫画/素描图像生成。通过人脸对齐后,我们能够进行人脸漫画和素描生成。

(4)、虚拟现实和增强现实。通过人脸对齐后,我们能够做出很多好玩的应用

(5)、人脸老化、年轻化、年龄推断。特征融合/图像增强。通过人脸对齐后,我们能够有效提取人脸特征,并分析人脸年龄、人脸老化等。

(6)、3D卡通。通过人脸对齐能够进行3D卡通模拟。

(7)、人脸识别、人脸比对等相关领域

四、人脸对齐在开源人脸识别中的应用

该项目是阿里云视觉智能开放平台的人脸1:N的开源替代,项目中使用的模型均为开源模型,项目支持milvus和proxima向量存储库,并具有较高的自定义能力。其次项目使用纯Java开发,免去使用Python带来的服务不稳定性,支持docker一键部署、支持Java客户端,restful接口等。

项目的gitee地址:https://gitee.com/open-visual/face-search

对齐工具:

https://gitee.com/open-visual/face-search/blob/master/face-search-core/src/main/java/com/visual/face/search/core/utils/AlignUtil.java

人脸识别中的重要环节-对齐之3D变换-Java版(文末附开源地址)的更多相关文章

  1. 揭秘人脸对齐之3D变换-Java版(文末赋开源地址)

    一.人脸对齐基本概念 人脸对齐通过人脸关键点检测得到人脸的关键点坐标,然后根据人脸的关键点坐标调整人脸的角度,使人脸对齐,由于输入图像的尺寸是大小不一的,人脸区域大小也不相同,角度不一样,所以要通过坐 ...

  2. 阿里云人脸1:N搜索开源版-Java版(文末附开源地址)

    ​ 一.人脸检测相关概念 人脸检测(Face Detection)是检测出图像中人脸所在位置的一项技术,是人脸智能分析应用的核心组成部分,也是最基础的部分.人脸检测方法现在多种多样,常用的技术或工具大 ...

  3. 阿里云视觉智能开放平台的人脸1:N搜索的开源替代-Java版(文末赋开源地址)

    ​ 一.人脸检测相关概念 人脸检测(Face Detection)是检测出图像中人脸所在位置的一项技术,是人脸智能分析应用的核心组成部分,也是最基础的部分.人脸检测方法现在多种多样,常用的技术或工具大 ...

  4. 机器学习:PCA(人脸识别中的应用——特征脸)

    一.思维理解 X:原始数据集: Wk:原始数据集 X 的前 K 个主成分: Xk:n 维的原始数据降维到 k 维后的数据集: 将原始数据集降维,就是将数据集中的每一个样本降维:X(i) . WkT = ...

  5. (转载)人脸识别中Softmax-based Loss的演化史

    人脸识别中Softmax-based Loss的演化史  旷视科技 近期,人脸识别研究领域的主要进展之一集中在了 Softmax Loss 的改进之上:在本文中,旷视研究院(上海)(MEGVII Re ...

  6. 深度挖坑:从数据角度看人脸识别中Feature Normalization,Weight Normalization以及Triplet的作用

    深度挖坑:从数据角度看人脸识别中Feature Normalization,Weight Normalization以及Triplet的作用 周翼南 北京大学 工学硕士 373 人赞同了该文章 基于深 ...

  7. 浅谈人脸识别中的loss 损失函数

    浅谈人脸识别中的loss 损失函数 2019-04-17 17:57:33 liguiyuan112 阅读数 641更多 分类专栏: AI 人脸识别   版权声明:本文为博主原创文章,遵循CC 4.0 ...

  8. atitit.人脸识别的应用场景and使用最佳实践 java .net php

    atitit.人脸识别的应用场景and使用最佳实践 java .net php 1. 人脸识别的应用场景 1 2. 框架选型 JNI2OpenCV.dll and JavaCV 1 3. Url ap ...

  9. atitit.人脸识别的应用场景and使用最佳实践 java .net php

    atitit.人脸识别的应用场景and使用最佳实践 java .net php 1. 人脸识别的应用场景1 2. 标准化的api1 3. 框架选型 JNI2OpenCV.dll and JavaCV ...

随机推荐

  1. keeper及er表示被动

    一些像employ这样的动词有employer和employee两个名词,而keep的名词只有keeper,keepee不是词.美剧FRIENDS和TBBT里出现了He/she is a keeper ...

  2. day12 keepalived高可用

    day12 keepalived高可用 一.高可用介绍 1.什么是高可用 部署在整个集群中的一个高可用软件,作用是创建一个VIP(虚拟IP),在整个集群中有且只有一个机器上生成VIP,当这台机器出现问 ...

  3. Hadoop【Hadoop-HA搭建(HDFS、YARN)】

    目录 0.HDFS-HA的工作机制 1. HDFS-HA集群配置 1.1 环境准备 1.2 规划集群 1.3 配置Zookeeper集群 2. 配置HDFS-HA集群 3. 启动HDFS-HA集群 4 ...

  4. Linux基础命令---echo打印内容到标准输出

    echo echo指令可以输出内容到标准输出,以空白分割字符串,并且后面增加换行. 此命令的适用范围:RedHat.RHEL.Ubuntu.CentOS.Fedora.   1.语法       ec ...

  5. Linux学习 - 修改、查询文件内容

    一.显示文件内容 cat  [-n]  [文件名] 正向显示 -n 显示行号 tac  [文件名] 反向显示 more  [文件名] 可实现分页显示 (空格)或(f) 翻页 (Enter) 换行 (q ...

  6. entfrm开源免费模块化无代码开发平台,开放生态为您创造更多的价值

    entfrm开发平台6大特性,赋能快速开发,为您创造更多的价值: 1. 模块化 丰富的模块稳定的框架 后台极易上手 目前已包括系统管理.任务调度.运维监控.开发工具.消息系统.工作流引擎.内容管理等模 ...

  7. 实现android自动化测试部署与运行Shell脚本分享

    我的配置是linux 64, android4.2.2的sdk. 实现的细节都在代码注释里了,变量名以及echo的内容也是说明的一部分. 主流程为: 1.检测是否指定端口的模拟器已经运行,若有则关闭2 ...

  8. java 动态代理—— Mybaties 拦截器链基本原理实现

    1.摘要 Mybaties 中有个分页插件,之前有特意的去了解了一下原理 :https://www.cnblogs.com/jonrain0625/p/11168247.html,从了解中得知分页插件 ...

  9. Tableau如何绘制凹凸图

    一.把订单日期拖拽至列,把销售额拖拽至行,类别拖拽至标记,并把订单日期拖拽至筛选器选择2017年 二.创建计算字段销售排名 三.将刚刚创建的销售排名拖拽至行,计算依据-类别 四.销量排名拖拽成两个,图 ...

  10. 转:select、poll、epoll之间的区别总结[整理]

    转:select.poll.epoll之间的区别总结[整理] select,poll,epoll都是IO多路复用的机制.I/O多路复用就通过一种机制,可以监视多个描述符,一旦某个描述符就绪(一般是读就 ...