人脸识别中的重要环节-对齐之3D变换-Java版(文末附开源地址)
一、人脸对齐基本概念
人脸对齐通过人脸关键点检测得到人脸的关键点坐标,然后根据人脸的关键点坐标调整人脸的角度,使人脸对齐,由于输入图像的尺寸是大小不一的,人脸区域大小也不相同,角度不一样,所以要通过坐标变换,对人脸图像进行归一化操作。人脸关键点检测有很多算法可以使用包括:ASM、AAM、DCNN 、TCDCN 、MTCNN 、TCNN、TCNN等,这里就不详细介绍,主要说一下得到人脸关键点之后如何进行人脸对齐,使所有人脸达到归一化效果,该过程如下图所示:

二、3D空间中的变换方式
欧氏变换:最简单的变换,它保持了向量的长度和夹角,相当于把一个刚体原封不动的移动或者旋转。
相似变换:比欧氏变换多一个自由度,它允许对物体进行均匀的缩放。
防射变换:又叫正交投影,经过变换后,立方体不再是方的,但是各个面仍是平行四边形。
射影变换:最一般的变换。例如使用相机随意拍摄一个方形的地板砖,在照片中的样子,它不再是方的,由于远近不同,甚至不再是平行四边形。如果焦距无穷远,则为仿射变换。
| 变换方式 | 矩阵 | 不变性质 |
|---|---|---|
|
欧氏变换 6dof |
|
长度 夹角 体积 |
|
相似变换 7dof |
|
体积比 |
|
仿射变换 12dof |
|
平行性 体积比 |
|
射影变换 15dof |
|
接触平面的相交和相切 |
三、对齐在图像领域的应用
(1)、人脸器官定位、器官跟踪。通过人脸对齐,我们能够定位到人脸的每个部件,提取相应的部件特征。
(2)、表情识别。通过人脸对齐后,我们能够利用对齐后的人脸形状分析人脸的表情状态。
(3)、人脸漫画/素描图像生成。通过人脸对齐后,我们能够进行人脸漫画和素描生成。
(4)、虚拟现实和增强现实。通过人脸对齐后,我们能够做出很多好玩的应用
(5)、人脸老化、年轻化、年龄推断。特征融合/图像增强。通过人脸对齐后,我们能够有效提取人脸特征,并分析人脸年龄、人脸老化等。
(6)、3D卡通。通过人脸对齐能够进行3D卡通模拟。
(7)、人脸识别、人脸比对等相关领域
四、人脸对齐在开源人脸识别中的应用
该项目是阿里云视觉智能开放平台的人脸1:N的开源替代,项目中使用的模型均为开源模型,项目支持milvus和proxima向量存储库,并具有较高的自定义能力。其次项目使用纯Java开发,免去使用Python带来的服务不稳定性,支持docker一键部署、支持Java客户端,restful接口等。
项目的gitee地址:https://gitee.com/open-visual/face-search
对齐工具:
人脸识别中的重要环节-对齐之3D变换-Java版(文末附开源地址)的更多相关文章
- 揭秘人脸对齐之3D变换-Java版(文末赋开源地址)
一.人脸对齐基本概念 人脸对齐通过人脸关键点检测得到人脸的关键点坐标,然后根据人脸的关键点坐标调整人脸的角度,使人脸对齐,由于输入图像的尺寸是大小不一的,人脸区域大小也不相同,角度不一样,所以要通过坐 ...
- 阿里云人脸1:N搜索开源版-Java版(文末附开源地址)
一.人脸检测相关概念 人脸检测(Face Detection)是检测出图像中人脸所在位置的一项技术,是人脸智能分析应用的核心组成部分,也是最基础的部分.人脸检测方法现在多种多样,常用的技术或工具大 ...
- 阿里云视觉智能开放平台的人脸1:N搜索的开源替代-Java版(文末赋开源地址)
一.人脸检测相关概念 人脸检测(Face Detection)是检测出图像中人脸所在位置的一项技术,是人脸智能分析应用的核心组成部分,也是最基础的部分.人脸检测方法现在多种多样,常用的技术或工具大 ...
- 机器学习:PCA(人脸识别中的应用——特征脸)
一.思维理解 X:原始数据集: Wk:原始数据集 X 的前 K 个主成分: Xk:n 维的原始数据降维到 k 维后的数据集: 将原始数据集降维,就是将数据集中的每一个样本降维:X(i) . WkT = ...
- (转载)人脸识别中Softmax-based Loss的演化史
人脸识别中Softmax-based Loss的演化史 旷视科技 近期,人脸识别研究领域的主要进展之一集中在了 Softmax Loss 的改进之上:在本文中,旷视研究院(上海)(MEGVII Re ...
- 深度挖坑:从数据角度看人脸识别中Feature Normalization,Weight Normalization以及Triplet的作用
深度挖坑:从数据角度看人脸识别中Feature Normalization,Weight Normalization以及Triplet的作用 周翼南 北京大学 工学硕士 373 人赞同了该文章 基于深 ...
- 浅谈人脸识别中的loss 损失函数
浅谈人脸识别中的loss 损失函数 2019-04-17 17:57:33 liguiyuan112 阅读数 641更多 分类专栏: AI 人脸识别 版权声明:本文为博主原创文章,遵循CC 4.0 ...
- atitit.人脸识别的应用场景and使用最佳实践 java .net php
atitit.人脸识别的应用场景and使用最佳实践 java .net php 1. 人脸识别的应用场景 1 2. 框架选型 JNI2OpenCV.dll and JavaCV 1 3. Url ap ...
- atitit.人脸识别的应用场景and使用最佳实践 java .net php
atitit.人脸识别的应用场景and使用最佳实践 java .net php 1. 人脸识别的应用场景1 2. 标准化的api1 3. 框架选型 JNI2OpenCV.dll and JavaCV ...
随机推荐
- Hbase(二)【shell操作】
目录 一.基础操作 1.进入shell命令行 2.帮助查看命令 二.命名空间操作 1.创建namespace 2.查看namespace 3.删除命名空间 三.表操作 1.查看所有表 2.创建表 3. ...
- Linux 设置时区
一.查看和修改Linux的时区 1. 查看当前时区命令 : "date -R" 2. 修改设置Linux服务器时区方法 A命令 : "tzselect" 方法 ...
- android studio 生成aar和引用aar
以android studio 2.0正式版为例 1.aar包是Android studio下打包android工程中src.res.lib后生成的aar文件,aar包导入其他android stud ...
- gen already exists but is not a source folder. Convert to a source folder or rename it 的解决办法
1. Right click on the project and go to "Properties" //鼠标右键点击项目,然后选中Properties 2. Select ...
- Undefined symbols for architecture arm64:问题
Undefined symbols for architecture arm64: "_sqlite3_prepare_v2", referenced from: +[HMJSch ...
- 最基础前端路由实现,事件popstate使用
<!DOCTYPE html> <html> <head> <meta charset="UTF-8"> <title> ...
- 为什么volatile能保证有序性不能保证原子性
对于内存模型的三大特性:有序性.原子性.可见性. 大家都知道volatile能保证可见性和有序性但是不能保证原子性,但是为什么呢? 一.原子性.有序性.可见性 1.原子性: (1)原子的意思代表着-- ...
- typescript接口---interface
假如我现在需要批量生产一批对象,这些对象有相同的属性,并且对应属性值的数据类型一致.该怎么去做? 在ts中,因为要检验数据类型,所以必须对每个变量进行规范,自然也提供了一种批量规范的功能.这个功能就是 ...
- <转>libevent基本使用demo
这篇文章介绍下libevent在socket异步编程中的应用.在一些对性能要求较高的网络应用程序中,为了防止程序阻塞在socket I/O操作上造成程序性能的下降,需要使用异步编程,即程序准备好读写的 ...
- (转)synchronize线程同步例子
在CSDN开了博客后,一直也没在上面发布过文章,直到前一段时间与一位前辈的对话,才发现技术博客的重要,立志要把CSDN的博客建好.但一直没有找到好的开篇的主题,今天再看JAVA线程互斥.同步的时候又有 ...



