题目

算法

应该是一道很经典的数位dp题

我们设dp[i][j]是填到第i位此时第i位的数是j的方案数

然后进行转移(代码注释)

代码

#include<iostream>
#include<cstdio>
#include<cmath>
#define ll long long
using namespace std;
ll p,q,dp[15][15];
ll init(){//进行初始化
for(ll i = 0;i <= 9;i++) dp[1][i] = 1;//[0,9]显然都是windy数
for(ll i = 2;i <= 10;i++)
for(ll j = 0;j <= 9;j++)
for(ll k = 0;k <= 9;k++)
if(abs(j - k) >= 2) dp[i][j] += dp[i - 1][k];//先预处理好dp值
}
ll work(ll x){//统计答案
ll a[15],len = 0,ans = 0;
while(x){//将x分解
a[++len] = x % 10;
x /= 10;
}
for(ll i = 1;i <= len - 1;i++)//先统计位数不足x位数的数 那这些数明显都可以计算到方案中
for(ll j = 1;j <= 9;j++)
ans += dp[i][j];
for(ll i = 1;i < a[len];i++)//位数和x位数相同 但最高位比x最高位小 显然也可以
ans += dp[len][i];
for(ll i = len - 1;i >= 1;i--){//这里处理位数和x位数相同 最高位 = x最高位的情况
for(ll j = 0;j <= a[i] - 1;j++)
if(abs(j - a[i + 1])>= 2) ans += dp[i][j];
if(abs(a[i + 1] - a[i]) < 2) break;
}
return ans;
}
ll a,b;
int main(){
scanf("%lld%lld",&a,&b);
init();
cout<<work(b + 1) - work(a);//这里应用前缀和的思想 work计算[0,x)的方案数 那么用work(b + 1) - work(a) 就是[a,b]的方案数
}

[SCOI2009] windy 数 (数位dp)的更多相关文章

  1. bzoj 1026 [SCOI2009]windy数 数位dp

    1026: [SCOI2009]windy数 Time Limit: 20 Sec Memory Limit: 256 MB 题目连接 http://www.lydsy.com/JudgeOnline ...

  2. luogu P2657 [SCOI2009]windy数 数位dp 记忆化搜索

    题目链接 luogu P2657 [SCOI2009]windy数 题解 我有了一种所有数位dp都能用记忆话搜索水的错觉 代码 #include<cstdio> #include<a ...

  3. BZOJ1026: [SCOI2009]windy数[数位DP]

    1026: [SCOI2009]windy数 Time Limit: 1 Sec  Memory Limit: 162 MBSubmit: 6346  Solved: 2831[Submit][Sta ...

  4. 洛谷P2657 [SCOI2009]windy数 [数位DP,记忆化搜索]

    题目传送门 windy数 题目描述 windy定义了一种windy数.不含前导零且相邻两个数字之差至少为2的正整数被称为windy数. windy想知道, 在A和B之间,包括A和B,总共有多少个win ...

  5. 【bzoj1026】[SCOI2009]windy数 数位dp

    题目描述 windy定义了一种windy数.不含前导零且相邻两个数字之差至少为2的正整数被称为windy数. windy想知道,在A和B之间,包括A和B,总共有多少个windy数? 输入 包含两个整数 ...

  6. [bzoj1026][SCOI2009]windy数——数位dp

    题目 求[a,b]中的windy数个数. windy数指的是任意相邻两个数位上的数至少相差2的数,比如135是,134不是. 题解 感觉这个题比刚才做的那个简单多了...这个才真的应该是数位dp入门题 ...

  7. P2657 [SCOI2009]windy数 数位dp

    数位dp之前完全没接触过,所以NOIP之前搞一下.数位dp就是一种dp,emm……用来求解区间[L,R]内满足某个性质的数的个数,且这个性质与数的大小无关. 在这道题中,dp[i][j]代表考虑了i位 ...

  8. bzoj 1026 [ SCOI2009 ] windy数 —— 数位DP

    题目:https://www.lydsy.com/JudgeOnline/problem.php?id=1026 蛮简单的数位DP,预处理 f[i][j] 表示 i 位数,以 j 开头的 windy ...

  9. bzoj 1026: [SCOI2009]windy数 & 数位DP算法笔记

    数位DP入门题之一 也是我所做的第一道数位DP题目 (其实很久以前就遇到过 感觉实现太难没写) 数位DP题目貌似多半是问从L到R内有多少个数满足某些限制条件 只要出题人不刻意去卡多一个$log$什么的 ...

  10. $SCOI2009\ windy$数 数位$dp$

    \(Sol\) 数位\(dp\)常规套路题. \(dp[i][j]\)表示从低位到高位填到第\(i\)位且第\(i\)位的数字为\(j\)的方案数.答案就是\(sol(r)-sol(l+1).\)这里 ...

随机推荐

  1. ClickHouse 存算分离架构探索

    背景 ClickHouse 作为开源 OLAP 引擎,因其出色的性能表现在大数据生态中得到了广泛的应用.区别于 Hadoop 生态组件通常依赖 HDFS 作为底层的数据存储,ClickHouse 使用 ...

  2. python OptionParser的用法

    from optparse import OptionParser parser = OptionParser(usage = "usage: %prog [options] arg&quo ...

  3. LiveVideoStackCon2021 北京站专访:从上云到创新,视频云的新技术、新场景

    伴随着视频技术的进步和标准的迭代,视频产业从模拟进入到数字时代,完成了从电影电视到互联网的媒介转换,并且衍生出了超高清.3D.AR/VR 等多种创新形态.特别是在后疫情的当下,我们可以看到音视频技术领 ...

  4. Java:基本概念小记

    Java:基本概念 一些基本 Java 概念,做一个小小小小的记录 面向对象&面向过程 面向对象思想就是在计算机程序设计过程中,参照现实中事物,将事物的属性特征.行为特征抽象出来,描述成计算机 ...

  5. [软工顶级理解组] Beta阶段测试报告

    在测试过程中发现了多少Bug? 测试阶段发现并已修复的bug: 尚且存在,但是难以解决或者不影响使用的bug: 计算重修课程的时候,如果重修课程的课程号和原课程号不同,则GPA计算会出现误差.但我们无 ...

  6. [HNOI2009]双递增序列(洛谷P4728)+小烈送菜(内部训练题)——奇妙的dp

    博主学习本题的经过嘤嘤嘤: 7.22 : 听学长讲(一知半解)--自己推(推不出来)--网上看题解--以为自己会了(网上题解是错的)--发现错误以后又自己推(没推出来)--给学长发邮件--得到正确解法 ...

  7. 单片机stm32串口分析

    stm32作为现在嵌入式物联网单片机行业中经常要用多的技术,相信大家都有所接触,今天这篇就给大家详细的分析下有关于stm32的出口,还不是很清楚的朋友要注意看看了哦,在最后还会为大家分享有些关于stm ...

  8. F. Mattress Run 题解

    F. Mattress Run 挺好的一道题,对于DP的本质的理解有很大的帮助. 首先要想到的就是将这个拆成两个题,一个dp光求获得足够的夜晚的最小代价,一个dp光求获得足够的停留的最小代价. 显然由 ...

  9. cf 11A Increasing Sequence(水,)

    题意: A sequence a0, a1, ..., at - 1 is called increasing if ai - 1 < ai for each i: 0 < i <  ...

  10. 用STM32定时器中断产生PWM控制步进电机

    控制步进电机可以使用PWM.定时器中断.延时,这里用的就是定时器中断来让它转动. 一.硬件部分1.使用的硬件板子用的是正点原子的STM32F103 mini板,驱动器是DM420(DM420驱动器资料 ...