用f[i][j][k]表示s1前i个字符、s2前j个字符的LCS且包括s3前k个字符的最长前缀,然后对其某一维滚动,实现时细节比较多

 1 #include<bits/stdc++.h>
2 using namespace std;
3 #define N 505
4 int l1,l2,l3,f[2][N][N];
5 char s1[N],s2[N],s3[N];
6 int main(){
7 scanf("%s%s%s",s1,s2,s3);
8 l1=strlen(s1);
9 l2=strlen(s2);
10 l3=strlen(s3);
11 for(int i=1,p=1;i<=l1;i++,p^=1){
12 memset(f[p],0,sizeof(f[p]));
13 for(int j=1;j<=l2;j++)
14 for(int k=0;k<=l3;k++){
15 f[p][j][k]=max(max(f[p^1][j][k],f[p][j-1][k]),f[p][j][k]);
16 if ((s1[i-1]==s2[j-1])&&((!k)||(f[p^1][j-1][k]))){
17 int kk=k+(s1[i-1]==s3[k]);
18 f[p][j][kk]=max(f[p][j][kk],f[p^1][j-1][k]+1);
19 }
20 }
21 }
22 if (!f[l1&1][l2][l3])printf("NO SOLUTION");
23 else printf("%d",f[l1&1][l2][l3]);
24 }

[bzoj3304]带限制的最长公共子序列的更多相关文章

  1. BZOJ 3304: [Shoi2005]带限制的最长公共子序列( LCS )

    求个LCS, 只是有了限制, 多加一维表示匹配到z串的第几个, 然后用滚动数组 ------------------------------------------------------------ ...

  2. bzoj3304[Shoi2005]带限制的最长公共子序列 DP

    题意:给出三个序列,求出前两个的公共子序列,且包含第三个序列,要求长度最长. 这道题目怎么做呢,f[i][j]表示a串1-i,b串1-j的最长,g[i][j]表示a串i-n,b串j-m最长, 那么只需 ...

  3. bzoj3304 [Shoi2005]带限制的最长公共子序列

    dp,时间复杂度O(n^3),f[i][j][k]表示a串到i,b串到j的时候,匹配了c串的k位,要用滚动数组 代码 #include<cstring> #include<algor ...

  4. hdu1243 dp (类最长公共子序列)

    题意:射击演习中,已知敌人出现的种类顺序,以及自己的子弹种类顺序,当同种类的子弹打到同种类的敌人时会得到相应分数,问最多能得多少分. 这题的题意很好理解,而且模型也很常见,是带权值的类最长公共子序列问 ...

  5. 经典递归问题:0,1背包问题 kmp 用遗传算法来解背包问题,hash表,位图法搜索,最长公共子序列

    0,1背包问题:我写笔记风格就是想到哪里写哪里,有很多是旧的也没删除,代码内部可能有很多重复的东西,但是保证能运行出最后效果 '''学点高大上的遗传算法''' '''首先是Np问题的定义: npc:多 ...

  6. 子序列 sub sequence问题,例:最长公共子序列,[LeetCode] Distinct Subsequences(求子序列个数)

    引言 子序列和子字符串或者连续子集的不同之处在于,子序列不需要是原序列上连续的值. 对于子序列的题目,大多数需要用到DP的思想,因此,状态转移是关键. 这里摘录两个常见子序列问题及其解法. 例题1, ...

  7. 程序员的算法课(6)-最长公共子序列(LCS)

    版权声明:本文为博主原创文章,遵循CC 4.0 BY-SA版权协议,转载请附上原文出处链接和本声明. 本文链接:https://blog.csdn.net/m0_37609579/article/de ...

  8. 从最长公共子序列问题理解动态规划算法(DP)

    一.动态规划(Dynamic Programming) 动态规划方法通常用于求解最优化问题.我们希望找到一个解使其取得最优值,而不是所有最优解,可能有多个解都达到最优值. 二.什么问题适合DP解法 如 ...

  9. 用python实现最长公共子序列算法(找到所有最长公共子串)

    软件安全的一个小实验,正好复习一下LCS的写法. 实现LCS的算法和算法导论上的方式基本一致,都是先建好两个表,一个存储在(i,j)处当前最长公共子序列长度,另一个存储在(i,j)处的回溯方向. 相对 ...

随机推荐

  1. Markdown Reference

    Markdown For Typora Overview Markdown is created by Daring Fireball; the original guideline is here. ...

  2. Java内存分析--栈--堆

    Java内存分析--栈--堆 JVM的内存分析: 1.栈内存 1.连续的存储空间,遵循后进先出的原则. 2.每个线程包含一个栈区,栈区只保存基础数据类型的对象和自定义对象的引用. 3.每个栈中的数据都 ...

  3. MongoDB中如何优雅地删除大量数据

    删除大量数据,无论是在哪种数据库中,都是一个普遍性的需求.除了正常的业务需求,我们需要通过这种方式来为数据库"瘦身". 为什么要"瘦身"呢? 表的数据量到达一定 ...

  4. 在 ASP.NET Core Web API中使用 Polly 构建弹性容错的微服务

    在 ASP.NET Core Web API中使用 Polly 构建弹性容错的微服务 https://procodeguide.com/programming/polly-in-aspnet-core ...

  5. Scrum Meeting 0423

    零.说明 日期:2021-4-23 任务:简要汇报两日内已完成任务,计划后两日完成任务 一.进度情况 组员 负责 两日内已完成的任务 后两日计划完成的任务 qsy PM&前端 完成引导页UI# ...

  6. kafka错误之 Topic xxx not present in metadata after 60000 ms

    Topic xxx not present in metadata after 60000 ms 一.背景 二.场景还原 1.jar包引入 2.jar代码 3.运行结果 三.问题解决 四.参考文档 一 ...

  7. spring cloud中使用hystrix实现回退

    在微服务架构中,我们的服务被拆分成多个微服务,每个微服务完成自己的职责,微服务之间通过rpc或http进行调用.这个时候我们就要确保我们的服务高可用,但谁也说不准我们的服务能永远快速的提供服务.假如现 ...

  8. EasyX安装教程

    Easyx是什么 就是一款可以在Windows里让你的C++程序里显示图片等的工具. 注意:EasyX不支持Linux.MacOS.不过还有Qt等可以选择. 安装VC/VS Easyx只支持Visua ...

  9. 与 Python 之父聊天:更快的 Python!

    Python猫注: 在今年 5 月的 Python 语言峰会上,Guido van Rossum 作了一场<Making CPython Faster>的分享(材料在此),宣告他加入了激动 ...

  10. 多线程--vthread

    vthread中包含两个类: vthread.vthread.pool vthread.vthread.thread 其中class pool的原型如下: class pool(builtins.ob ...