洛谷2494 [SDOI2011]保密 (分数规划+最小割)
自闭一早上
分数规划竟然还能被卡精度
首先假设我们已经知道了到每个出入口的时间(代价)
那我们应该怎么算最小的和呢?
一个比较巧妙的想法是,由于题目规定的是二分图。
我们不妨通过最小割的形式。
表示这个基地必须从两个口之一进,从\(S\)连到奇数点,偶数点连到\(T\),流量是到这个点的时间。
然后对于每个空腔的\(u和v,(u->v,inf)\)表示这个二者至少要到一个。
那么这样跑一遍最小割,就表示经过所有空腔的最小代价。
那么现在其实问题就转化成了
如果求到一个点的时间\(a[i]\)
观察题目中的柿子。
\(a[i]=\frac{\sum t}{\sum s}\)
哎!这个是不是可以直接分数规划啊。
因为有无限的军队,所以每个点之间是可以单独处理的。
首先我们先考虑对于任意一个点\(x\)
不妨直接二分
设\(mid>\frac{\sum t}{\sum s}\)
则
\]
如果我们将边权设为\(t-mid*s\)
那么我们只需要判断到一个点的最短路是否是小于0,如果小于,那么\(ans<mid\),继续二分即可。
那么我们对于每一个点都做一个这样的过程,\(a[i]\)也就能求出来了啦
qwq
这有一个需要注意的地方,也是我做的时候看题解才用的一个剪枝。
就是我们用\(spfa\)求最短路的时候,只要遇到了目标点,并且\(dis<=0\),直接\(return\)
这样能大大加快你程序的速度。
#include<iostream>
#include<cstdio>
#include<algorithm>
#include<cstring>
#include<cmath>
#include<queue>
#include<map>
#include<set>
#define mk make_pair
#define ll long long
#define db double
using namespace std;
inline int read()
{
int x=0,f=1;char ch=getchar();
while (!isdigit(ch)) {if (ch=='-') f=-1;ch=getchar();}
while (isdigit(ch)) {x=(x<<1)+(x<<3)+ch-'0';ch=getchar();}
return x*f;
}
const int maxn = 1410;
const int maxm = 1e6+1e2;
const double inf = 1e12;
const double eps = 1e-4 ;
int point[maxn],nxt[maxm],to[maxm];
db val[maxm];
int cnt=1,n,m;
int h[maxn];
int x[maxm],y[maxm];
double w[maxm],p[maxm];
int s,t;
int st;
double dis[maxn],cost[maxm];
int vis[maxn];
void init()
{
cnt=1;
memset(point,0,sizeof(point));
}
void addedge(int x,int y,db w)
{
nxt[++cnt]=point[x];
to[cnt]=y;
point[x]=cnt;
val[cnt]=w;
}
void add(int x,int y,double w)
{
//printf("%d %d %.2lf\n",x,y,w);
nxt[++cnt]=point[x];
to[cnt]=y;
cost[cnt]=w;
point[x]=cnt;
}
void insert(int x,int y,db w)
{
//cout<<x<<" "<<y<<" "<<w<<endl;
addedge(x,y,w);
addedge(y,x,0);
}
queue<int> q;
void spfa(int s,int ed)
{
for (int i=1;i<=maxn-2;i++) dis[i]=inf;
memset(vis,0,sizeof(vis));
while (!q.empty()) q.pop();
dis[s]=0;
q.push(s);
while (!q.empty())
{
int x = q.front();
q.pop();
vis[x]=0;
for (int i=point[x];i;i=nxt[i])
{
int p = to[i];
if (dis[p]>dis[x]+cost[i])
{
dis[p]=dis[x]+cost[i];
if (p==ed && dis[p]<=-eps) return;
if (!vis[p])
{
q.push(p);
vis[p]=1;
}
}
}
}
}
bool bfs(int s)
{
memset(h,-1,sizeof(h));
while (!q.empty()) q.pop();
h[s]=0;
q.push(s);
while (!q.empty())
{
int x = q.front();
q.pop();
for (int i=point[x];i;i=nxt[i])
{
int p = to[i];
if (h[p]==-1 && val[i]>0)
{
h[p]=h[x]+1;
q.push(p);
}
}
}
if (h[t]==-1) return false;
return true;
}
db dfs(int x,db low)
{
if (x==t ||low==0) return low;
db totflow=0;
for (int i=point[x];i;i=nxt[i])
{
int p = to[i];
if (val[i]>0 && h[p]==h[x]+1)
{
db tmp = dfs(p,min(low,val[i]));
val[i]-=tmp;
val[i^1]+=tmp;
low-=tmp;
totflow+=tmp;
if (low==0) return totflow;
}
}
if (low>0) h[x]=-1;
return totflow;
}
db dinic()
{
db ans=0;
while (bfs(s))
{
ans=ans+dfs(s,inf);
}
return ans;
}
double uu=0;
bool check(double mid,int xx)
{
init();
for (int i=1;i<=m;i++)
add(x[i],y[i],w[i]-mid*p[i]);
spfa(n,xx);
return (dis[xx]<=-eps);
}
double solve(int x)
{
double l=0,r=2e9;
double ans=inf;
while (r-l>=1e-4)
{
double mid = (l+r)/2;
if(check(mid,x)) r=mid,ans=mid;
else l=mid;
}
return ans;
}
double a[maxn];
signed main()
{
n=read(),m=read();
for (int i=1;i<=m;i++)
scanf("%lld%lld%lf%lf",&x[i],&y[i],&w[i],&p[i]);
int num1=read(),num2=read();
init();
s=maxn-10;
t=s+1;
for (int i=1;i<=num2;i++)
{
double pp = solve(i);
a[i]=pp;
}
init();
for (int i=1;i<=num2;i++)
{
if (i&1) insert(s,i,a[i]);
else insert(i,t,a[i]);
}
for (int i=1;i<=num1;i++)
{
int u=read(),v=read();
if (v&1) swap(u,v);
if (a[u]==inf && a[v]==inf)
{
cout<<-1;
return 0;
}
insert(u,v,inf);
}
double ptx = dinic();
printf("%.1lf\n",ptx);
return 0;
}
洛谷2494 [SDOI2011]保密 (分数规划+最小割)的更多相关文章
- 【洛谷P2494】 [SDOI2011]保密(分数规划+最小割)
洛谷 题意: 题意好绕好绕...不想写了. 思路: 首先类似于分数规划做法,二分答案得到到每个点的最小危险度. 然后就是在一个二分图中,两边撤掉最少的点(相应代价为上面算出的危险度)及相应边,使得中间 ...
- zoj 2676 Network Wars 0-1分数规划+最小割
题目详解出自 论文 Amber-最小割模型在信息学竞赛中的应用 题目大意: 给出一个带权无向图 G = (V,E), 每条边 e属于E都有一个权值We,求一个割边集C,使得该割边集的平均边权最小,即最 ...
- 【BZOJ3232】圈地游戏 分数规划+最小割
[BZOJ3232]圈地游戏 Description DZY家的后院有一块地,由N行M列的方格组成,格子内种的菜有一定的价值,并且每一条单位长度的格线有一定的费用. DZY喜欢在地里散步.他总是从任意 ...
- bzoj 3232: 圈地游戏【分数规划+最小割】
数组开小导致TTTTTLE-- 是分数规划,设sm为所有格子价值和,二分出mid之后,用最小割来判断,也就是判断sm-dinic()>=0 这个最小割比较像最大权闭合子图,建图是s像所有点连流量 ...
- bzoj 3232 圈地游戏 —— 01分数规划+最小割建图(最大权闭合子图)
题目:https://www.lydsy.com/JudgeOnline/problem.php?id=3232 心烦意乱的时候调这道题真是...越调越气,就这样过了一晚上... 今天再认真看看,找出 ...
- 【洛谷P3973】[TJOI2015]线性代数(最小割)
洛谷 题意: 给出一个\(n*n\)的矩阵\(B\),再给出一个\(1*n\)的矩阵\(C\). 求一个\(1*n\)的\(01\)矩阵\(A\),使得\(D=(A\cdot B-C)\cdot A^ ...
- HDU 2676 Network Wars 01分数规划,最小割 难度:4
http://acm.zju.edu.cn/onlinejudge/showProblem.do?problemId=1676 对顶点i,j,起点s=1,终点t=n,可以认为题意要求一组01矩阵use ...
- 【洛谷 P3227】 [HNOI2013]切糕(最小割)
题目链接 每层每个位置向下一层这个位置连边,流量为下一层这个位置的\(f\),源点向第一层连,流量第一层每个位置的费用,最后一层向汇点连,流量\(INF\). 这样就得到了\(P*Q\)条链,不考虑\ ...
- 洛谷P3355 骑士共存问题(最小割)
传送门 de了两个小时的bug愣是没发现错在哪里……没办法只好重打了一遍竟然1A……我有点想从这里跳下去了…… 和方格取数问题差不多,把格子按行数和列数之和的奇偶性分为黑的和白的,可以发现某种颜色一定 ...
随机推荐
- 测试Kaggle kernel commit 是否会删除以前的output
在kaggle上创建kernel,加入如下代码. 连续运行两次,可以看到保存的文件名字不一样,且无论运行错少次,都只有一个输出文件. 这说明,kaggle上的kernel每次commit运行,都会清空 ...
- a、b、n为正整数且a>b,证明:若n|(a^n-b^n),则n|(a^n-b^n)/(a-b).
- Nginx反向代理之巨坑underscores_in_headers
一.背景 因为项目需求,在做Windows的相关的事情:基本架构就是Nginx--> Nginx --> IIS,在Linux机器上通过Nginx做反向代理到Windows的IIS:然后遇 ...
- elsa-core:4.ASP.NET Core Server with Elsa Dashboard
在本快速入门中,我们将了解一个最小的 ASP.NET Core 应用程序,该应用程序承载 Elsa Dashboard 组件并将其连接到 Elsa Server. ElsaDashboard + Do ...
- CSP-J&S 2020挂分记
应该是退役记 OI 是一门玄学--考后有感 Day -inf 找各科老师请假备考,看着我倒一倒二的好成绩分纷劝我放弃竞赛,成功请到了假. Day -1 怎么莫名其妙大家都在学些奇怪的东西? 跟风写了一 ...
- 眼镜选款新方法,用AR+Scene技术实现3D虚拟试戴
互联网和智慧终端的普及促进了电商的产生和蓬勃发展,而新技术的产生,则推动着电商领域的不断升级.疫情使得人们更加习惯于使用电商进行购物,但对传统的线上购物模式已经产生了一些厌倦,电商市场急需模式上的变革 ...
- Linux上安装服务器监视工具,名为pyDash。
pyDash – A Web Based Linux Performance Monitoring Tool 你可以通过以下命令来判断是否已安装: pip --version # Python2.x ...
- 并发编程之:ForkJoin
大家好,我是小黑,一个在互联网苟且偷生的农民工. 在JDK1.7中引入了一种新的Fork/Join线程池,它可以将一个大的任务拆分成多个小的任务并行执行并汇总执行结果. Fork/Join采用的是分而 ...
- 自己实现一个Controller——精简型
写在最前 controller-manager作为K8S master的其中一个组件,负责众多controller的启动和终止,这些controller负责监控着k8s中各种资源,执行调谐,使他们的实 ...
- [Navicat15 试用期过期解决办法]
Navicat15 试用期过期解决办法 第一步:关闭Navicat 第二步: 打开注册表编辑器,win + R, 输入regedit 第三步: 在最上方搜索框输入HKEY_CURRENT_USER\S ...