洛谷2494 [SDOI2011]保密 (分数规划+最小割)
自闭一早上
分数规划竟然还能被卡精度
首先假设我们已经知道了到每个出入口的时间(代价)
那我们应该怎么算最小的和呢?
一个比较巧妙的想法是,由于题目规定的是二分图。
我们不妨通过最小割的形式。
表示这个基地必须从两个口之一进,从\(S\)连到奇数点,偶数点连到\(T\),流量是到这个点的时间。
然后对于每个空腔的\(u和v,(u->v,inf)\)表示这个二者至少要到一个。
那么这样跑一遍最小割,就表示经过所有空腔的最小代价。
那么现在其实问题就转化成了
如果求到一个点的时间\(a[i]\)
观察题目中的柿子。
\(a[i]=\frac{\sum t}{\sum s}\)
哎!这个是不是可以直接分数规划啊。
因为有无限的军队,所以每个点之间是可以单独处理的。
首先我们先考虑对于任意一个点\(x\)
不妨直接二分
设\(mid>\frac{\sum t}{\sum s}\)
则
\]
如果我们将边权设为\(t-mid*s\)
那么我们只需要判断到一个点的最短路是否是小于0,如果小于,那么\(ans<mid\),继续二分即可。
那么我们对于每一个点都做一个这样的过程,\(a[i]\)也就能求出来了啦
qwq
这有一个需要注意的地方,也是我做的时候看题解才用的一个剪枝。
就是我们用\(spfa\)求最短路的时候,只要遇到了目标点,并且\(dis<=0\),直接\(return\)
这样能大大加快你程序的速度。
#include<iostream>
#include<cstdio>
#include<algorithm>
#include<cstring>
#include<cmath>
#include<queue>
#include<map>
#include<set>
#define mk make_pair
#define ll long long
#define db double
using namespace std;
inline int read()
{
int x=0,f=1;char ch=getchar();
while (!isdigit(ch)) {if (ch=='-') f=-1;ch=getchar();}
while (isdigit(ch)) {x=(x<<1)+(x<<3)+ch-'0';ch=getchar();}
return x*f;
}
const int maxn = 1410;
const int maxm = 1e6+1e2;
const double inf = 1e12;
const double eps = 1e-4 ;
int point[maxn],nxt[maxm],to[maxm];
db val[maxm];
int cnt=1,n,m;
int h[maxn];
int x[maxm],y[maxm];
double w[maxm],p[maxm];
int s,t;
int st;
double dis[maxn],cost[maxm];
int vis[maxn];
void init()
{
cnt=1;
memset(point,0,sizeof(point));
}
void addedge(int x,int y,db w)
{
nxt[++cnt]=point[x];
to[cnt]=y;
point[x]=cnt;
val[cnt]=w;
}
void add(int x,int y,double w)
{
//printf("%d %d %.2lf\n",x,y,w);
nxt[++cnt]=point[x];
to[cnt]=y;
cost[cnt]=w;
point[x]=cnt;
}
void insert(int x,int y,db w)
{
//cout<<x<<" "<<y<<" "<<w<<endl;
addedge(x,y,w);
addedge(y,x,0);
}
queue<int> q;
void spfa(int s,int ed)
{
for (int i=1;i<=maxn-2;i++) dis[i]=inf;
memset(vis,0,sizeof(vis));
while (!q.empty()) q.pop();
dis[s]=0;
q.push(s);
while (!q.empty())
{
int x = q.front();
q.pop();
vis[x]=0;
for (int i=point[x];i;i=nxt[i])
{
int p = to[i];
if (dis[p]>dis[x]+cost[i])
{
dis[p]=dis[x]+cost[i];
if (p==ed && dis[p]<=-eps) return;
if (!vis[p])
{
q.push(p);
vis[p]=1;
}
}
}
}
}
bool bfs(int s)
{
memset(h,-1,sizeof(h));
while (!q.empty()) q.pop();
h[s]=0;
q.push(s);
while (!q.empty())
{
int x = q.front();
q.pop();
for (int i=point[x];i;i=nxt[i])
{
int p = to[i];
if (h[p]==-1 && val[i]>0)
{
h[p]=h[x]+1;
q.push(p);
}
}
}
if (h[t]==-1) return false;
return true;
}
db dfs(int x,db low)
{
if (x==t ||low==0) return low;
db totflow=0;
for (int i=point[x];i;i=nxt[i])
{
int p = to[i];
if (val[i]>0 && h[p]==h[x]+1)
{
db tmp = dfs(p,min(low,val[i]));
val[i]-=tmp;
val[i^1]+=tmp;
low-=tmp;
totflow+=tmp;
if (low==0) return totflow;
}
}
if (low>0) h[x]=-1;
return totflow;
}
db dinic()
{
db ans=0;
while (bfs(s))
{
ans=ans+dfs(s,inf);
}
return ans;
}
double uu=0;
bool check(double mid,int xx)
{
init();
for (int i=1;i<=m;i++)
add(x[i],y[i],w[i]-mid*p[i]);
spfa(n,xx);
return (dis[xx]<=-eps);
}
double solve(int x)
{
double l=0,r=2e9;
double ans=inf;
while (r-l>=1e-4)
{
double mid = (l+r)/2;
if(check(mid,x)) r=mid,ans=mid;
else l=mid;
}
return ans;
}
double a[maxn];
signed main()
{
n=read(),m=read();
for (int i=1;i<=m;i++)
scanf("%lld%lld%lf%lf",&x[i],&y[i],&w[i],&p[i]);
int num1=read(),num2=read();
init();
s=maxn-10;
t=s+1;
for (int i=1;i<=num2;i++)
{
double pp = solve(i);
a[i]=pp;
}
init();
for (int i=1;i<=num2;i++)
{
if (i&1) insert(s,i,a[i]);
else insert(i,t,a[i]);
}
for (int i=1;i<=num1;i++)
{
int u=read(),v=read();
if (v&1) swap(u,v);
if (a[u]==inf && a[v]==inf)
{
cout<<-1;
return 0;
}
insert(u,v,inf);
}
double ptx = dinic();
printf("%.1lf\n",ptx);
return 0;
}
洛谷2494 [SDOI2011]保密 (分数规划+最小割)的更多相关文章
- 【洛谷P2494】 [SDOI2011]保密(分数规划+最小割)
洛谷 题意: 题意好绕好绕...不想写了. 思路: 首先类似于分数规划做法,二分答案得到到每个点的最小危险度. 然后就是在一个二分图中,两边撤掉最少的点(相应代价为上面算出的危险度)及相应边,使得中间 ...
- zoj 2676 Network Wars 0-1分数规划+最小割
题目详解出自 论文 Amber-最小割模型在信息学竞赛中的应用 题目大意: 给出一个带权无向图 G = (V,E), 每条边 e属于E都有一个权值We,求一个割边集C,使得该割边集的平均边权最小,即最 ...
- 【BZOJ3232】圈地游戏 分数规划+最小割
[BZOJ3232]圈地游戏 Description DZY家的后院有一块地,由N行M列的方格组成,格子内种的菜有一定的价值,并且每一条单位长度的格线有一定的费用. DZY喜欢在地里散步.他总是从任意 ...
- bzoj 3232: 圈地游戏【分数规划+最小割】
数组开小导致TTTTTLE-- 是分数规划,设sm为所有格子价值和,二分出mid之后,用最小割来判断,也就是判断sm-dinic()>=0 这个最小割比较像最大权闭合子图,建图是s像所有点连流量 ...
- bzoj 3232 圈地游戏 —— 01分数规划+最小割建图(最大权闭合子图)
题目:https://www.lydsy.com/JudgeOnline/problem.php?id=3232 心烦意乱的时候调这道题真是...越调越气,就这样过了一晚上... 今天再认真看看,找出 ...
- 【洛谷P3973】[TJOI2015]线性代数(最小割)
洛谷 题意: 给出一个\(n*n\)的矩阵\(B\),再给出一个\(1*n\)的矩阵\(C\). 求一个\(1*n\)的\(01\)矩阵\(A\),使得\(D=(A\cdot B-C)\cdot A^ ...
- HDU 2676 Network Wars 01分数规划,最小割 难度:4
http://acm.zju.edu.cn/onlinejudge/showProblem.do?problemId=1676 对顶点i,j,起点s=1,终点t=n,可以认为题意要求一组01矩阵use ...
- 【洛谷 P3227】 [HNOI2013]切糕(最小割)
题目链接 每层每个位置向下一层这个位置连边,流量为下一层这个位置的\(f\),源点向第一层连,流量第一层每个位置的费用,最后一层向汇点连,流量\(INF\). 这样就得到了\(P*Q\)条链,不考虑\ ...
- 洛谷P3355 骑士共存问题(最小割)
传送门 de了两个小时的bug愣是没发现错在哪里……没办法只好重打了一遍竟然1A……我有点想从这里跳下去了…… 和方格取数问题差不多,把格子按行数和列数之和的奇偶性分为黑的和白的,可以发现某种颜色一定 ...
随机推荐
- Spring Boot +Vue 项目实战笔记(三):数据库的引入
这一篇的主要内容是引入数据库并实现通过数据库验证用户名与密码. 一.引入数据库 之前说过数据库的采用是 MySQL,算是比较主流的选择,从性能和体量等方面都比较优秀,当然也有一些弊端,但数据库不是我们 ...
- JDBC简介及JDBC编写步骤及常见API
JDBC : Java Database Connectivity,Java数据库连接.SUN公司为了简化.统一对数据库的操作,定义了一套Java操作数据库的规范,称之为JDBC. JDBC就像一座桥 ...
- 致敬mentohust,路由器使用Socket认证华科校园网
致敬mentohust,路由器使用Socket认证华科校园网 前言: 上一篇文章中,为了解决ESP32华科无线网认证的问题,我成功把网页认证机制用Python+Socket复现.但痛点依然存在,无线网 ...
- Mybatis-Plus - 条件构造器 QueryWrapper 的使用
目录 前言 查询示例 基础代码 QueryWrapper 的基本使用 QueryWrapper 的lambada写法 LambadaQueryWrapper 的使用 LambdaQueryChainW ...
- shell循环语句while
格式1: while 条件 do 执行命令 done 格式2: while 条件;do 命令 done 例子: while [ 1 -eq 1 ];do echo "这一步需要先修改/dat ...
- Linux制作根文件系统笔记
测试平台 宿主机平台:Ubuntu 12.04.4 LTS 目标机:Easy-ARM IMX283 目标机内核:Linux 2.6.35.3 交叉编译器:arm-linux-gcc 4.4.4 Bus ...
- Appium问题解决方案(10)- Original error: Swipe did not complete successfully
背景 从搜索页面返回首页之后,执行 swipe 滑动操作,但是报错了,如上图 解决方法 只需要在第一次 swipe 之前加个 sleep,强制等待即可 备注 这种解决方案其实不好,强制等待能少用就少 ...
- 腾讯与Intel就云游戏的探讨
今天去参加了在腾讯北京总部的腾讯音视频技术 HUB 技术巡回大会,对其中的云游戏应用的探讨格外感兴趣.正巧最近元宇宙概念很火,这篇文章就大会中对云游戏的探讨进行总结和汇报. 讲述一下来自Intel的工 ...
- 【死磕NIO】— NIO基础详解
Netty 是基于Java NIO 封装的网络通讯框架,只有充分理解了 Java NIO 才能理解好Netty的底层设计.Java NIO 由三个核心组件组件: Buffer Channel Sele ...
- Identity用户管理入门二(显示用户列表)
在Controllers中新建AccountController,并在构造方法(函数)中注入SignInManager,UserManager UserManager 用户管理(注册,查找,修改, ...