Content

给定 \(n\) 个整数 \(1,2,\dots,n\),请问是否能从这 \(n\) 个数中恰好选 \(k\) 个数,使得这 \(k\) 个数的和为 \(s\)。

数据范围:\(t\) 组数据,\(1\leqslant t\leqslant 10^3\),\(1\leqslant k\leqslant n\leqslant 10^9\),\(1\leqslant s\leqslant 10^{18}\)。

Solution

我们都知道,从 \(1\) 到 \(n\) 中选出 \(k\) 个数,最小和是 \(1\sim k\) 的和,最大和是 \(n-k+1\sim n\) 的和,而在此之间的所有的整数和都能够通过最小和和最大和当中的某些数进行加减得到,比如说 \(1\sim 5\) 中选出 \(3\) 个数,最小和是 \(6\),最大和是 \(12\),那么可以构造出如下的整数和的方案:

  • 选出的数的集合为 \(\{1,2,3\}\),总和为 \(6\)。
  • 选出的数的集合为 \(\{1,2,4\}\),总和为 \(7\)。
  • 选出的数的集合为 \(\{1,2,5\}\),总和为 \(8\)。
  • 选出的数的集合为 \(\{1,3,5\}\),总和为 \(9\)。
  • 选出的数的集合为 \(\{1,4,5\}\),总和为 \(10\)。
  • 选出的数的集合为 \(\{2,4,5\}\),总和为 \(11\)。
  • 选出的数的集合为 \(\{3,4,5\}\),总和为 \(12\)。

其实这也给出了一种构造出从 \(1\) 到 \(n\) 中选出 \(k\) 个数和为 \(s\) 的一种方案:

  • 首先,先选出 \(1\sim k\)。
  • 然后,从最后一个数(第 \(k\) 个数)开始往前推,如果当前到了第 \(i\) 个数,直接加到 \(n-k+i\),再根据是否超过了 \(s\) 进行判断。如果当前和 \(\geqslant s\),那么将当前数减回去到刚好使和等于 \(s\),否则继续往前推。
  • 依此下去,就能够构造出一种满足题目要求的方案。

因此我们先算出 \(s_{\min}=\sum\limits_{i=1}^k i=\dfrac{k(k+1)}2\) 和 \(s_{\max}=\sum\limits_{i=1}^kn-k+i=\dfrac{(2n-k+1)k}2\),然后再拿 \(s_{\min},s_{\max}\) 与 \(s\) 进行比较。如果 \(s_{\min}\leqslant s\leqslant s_{\max}\),那么显然能够恰好选出和为 \(s\) 的 \(k\) 个数,否则就不行。

Code

int main() {
MT {
ll n = Rll, k = Rll, s = Rll;
((2 * n - k + 1) * k / 2 < s || (1 + k) * k / 2 > s) ? No : Yes;
}
return 0;
}

LuoguP7593 凑数 题解的更多相关文章

  1. P2188 小Z的 k 紧凑数 题解(数位DP)

    题目链接 小Z的 k 紧凑数 解题思路 数位DP,把每一个数位的每一个数对应的可能性表示出来,然后求\(num(1,r)-num(1,l-1)\),其中\(num(i,j)\)表示\([i,j]\)区 ...

  2. NOIP 2008提高组第三题题解by rLq

    啊啊啊啊啊啊今天已经星期三了吗 那么,来一波题解吧 本题地址http://www.luogu.org/problem/show?pid=1006 传纸条 题目描述 小渊和小轩是好朋友也是同班同学,他们 ...

  3. BestCoder Round #60 题解链接

    题解  题目 1001 GT and sequence 注意先特判000的情况:如果读入的数据有000,那么去掉所有的000且最后答案和000取一个max. 剩下的正数显然全部乘起来比较优. 对于负数 ...

  4. 2018 ACM-ICPC Asia Beijing Regional Contest (部分题解)

    摘要 本文主要给出了2018 ACM-ICPC Asia Beijing Regional Contest的部分题解,意即熟悉区域赛题型,保持比赛感觉. Jin Yong’s Wukong Ranki ...

  5. 51nod 1577 异或凑数

    思路真的是挺巧妙的. 让我惊叹,原来线性基还能这么做?!?! 好吧,这种取若干个数异或凑数的题目怎么能少的了线性基呢? 但是,问题集中在于怎么快速提取一个区间的线性基 暴力n^2 线段树维护线性基?分 ...

  6. 2016 华南师大ACM校赛 SCNUCPC 非官方题解

    我要举报本次校赛出题人的消极出题!!! 官方题解请戳:http://3.scnuacm2015.sinaapp.com/?p=89(其实就是一堆代码没有题解) A. 树链剖分数据结构板题 题目大意:我 ...

  7. noip2016十连测题解

    以下代码为了阅读方便,省去以下头文件: #include <iostream> #include <stdio.h> #include <math.h> #incl ...

  8. BZOJ-2561-最小生成树 题解(最小割)

    2561: 最小生成树(题解) Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 1628  Solved: 786 传送门:http://www.lyd ...

  9. Codeforces Round #353 (Div. 2) ABCDE 题解 python

    Problems     # Name     A Infinite Sequence standard input/output 1 s, 256 MB    x3509 B Restoring P ...

随机推荐

  1. 大厂技术实现 | 腾讯信息流推荐排序中的并联双塔CTR结构 @推荐与计算广告系列

    作者:韩信子@ShowMeAI,Joan@腾讯 地址:http://www.showmeai.tech/article-detail/tencent-ctr 声明:版权所有,转载请联系平台与作者并注明 ...

  2. 小白秒懂的Windows下搭建基于pytorch的深度学习环境

    配置环境总体思路 1.依据python版本选择对应Anaconda版本: 2.依据显卡驱动版本选择对应的CUDA版本: 3.依据CUDA版本选择对应的cudnn和pytorch版本. 一.Anacon ...

  3. c链表中指针的一些用法要点

    /* 结构体不能含有同类型的结构,但是可以含有指向同类型结构的指针.这样的定义是定义一个链表的基础. */1 typedef int Element; 2 3 typedef struct node{ ...

  4. 全面了解 Javascript Prototype Chain 原型链

    原型链可以说是Javascript的核心特征之一,当然也是难点之一.学过其它面向对象的编程语言后再学习Javascript多少会感到有些迷惑.虽然Javascript也可以说是面向对象的语言,但是其实 ...

  5. [CCC​2019] Tourism题解

    我们先考虑一下拿部分分: subtask1 考虑因为 \(n < 2k\) ,那么我们的划分一定是从中间某个地方裁开,且满足 \(k\) 的条件的,我们发现当划分点在 \([n\ mod\ k, ...

  6. Codeforces 1413F - Roads and Ramen(树的直径+找性质)

    Codeforces 题目传送门 & 洛谷题目传送门 其实是一道还算一般的题罢--大概是最近刷长链剖分,被某道长链剖分与直径结合的题爆踩之后就点开了这题. 本题的难点就在于看出一个性质:最长路 ...

  7. Bedtools如何比较两个参考基因组注释版本的基因?

    目录 问题 思路 问题 原问题来自:How to calculate overlapping genes between two genome annotation versions? 其实可分为两个 ...

  8. Pysam 处理bam文件

    Pysam可用来处理bam文件 安装: 用 pip 或者 conda即可 使用: Pysam的函数有很多,主要的读取函数有: AlignmentFile:读取BAM/CRAM/SAM文件 Varian ...

  9. Nginx 动态增加扩展

    Nginx 动态增加扩展 1. 先查看目前nginx已加载模块 /home/nginx-1.18.0 # nginx -V nginx version: nginx/1.18.0 built by g ...

  10. nohup使用

    nohup:不挂断运行 在忽略挂起信号的情况下运行给定的命令,以便在注销后命令可以在后台继续运行. 可以这么理解:不挂断的运行,注意并没有后台运行的功能,就是指,用nohup 运行命令可以是命令永远运 ...