Gene and Gina have a particular kind of farm. Instead of growing animals and vegetables, as
it is usually the case in regular farms, they grow strings. A string is a sequence of characters.
Strings have the particularity that, as they grow, they add characters to the left and/or to the
right of themselves, but they never lose characters, nor insert new characters in the middle.
Gene and Gina have a collection of photos of some strings at different times during their growth.
The problem is that the collection is not annotated, so they forgot to which string each photo
belongs to. They want to put together a wall to illustrate strings growing procedures, but they
need your help to find an appropriate sequence of photos.
Each photo illustrates a string. The sequence of photos must be such that if si comes imme-
diately before si+1 in the sequence, then si+1 is a string that may have grown from si (i.e., si
appears as a consecutive substring of si+1). Also, they do not want to use repeated pictures,
so all strings in the sequence must be different.
Given a set of strings representing all available photos, your job is to calculate the size of the
largest sequence they can produce following the guidelines above.
Gene and Gina have a particular kind of farm. Instead of growing animals and vegetables, as it is usually the case in regular farms, they grow strings. A string is a sequence of characters. Strings have the particularity that, as they grow, they add characters to the left and/or to the right of themselves, but they never lose characters, nor insert new characters in the middle. 
 Gene and Gina have a collection of photos of some strings at different times during their growth. The problem is that the collection is not annotated, so they forgot to which string each photo belongs to. They want to put together a wall to illustrate strings growing procedures, but they need your help to find an appropriate sequence of photos.
Each photo illustrates a string. The sequence of photos must be such that if si comes immediately before si+1 in the sequence, then si+1 is a string that may have grown from si (i.e., si appears as a consecutive substring of si+1). Also, they do not want to use repeated pictures, so all strings in the sequence must be different.
Given a set of strings representing all available photos, your job is to calculate the size of the largest sequence they can produce following the guidelines above.
                --by spoj


大意是有些字符串,从中选一些首尾相接,要求是相邻两串中前串为后串的子串
求最多用多少串
统计以串x为最长串(总母串)的最大方案,再枚举x取max
统计的方法是:
在标记fail指针时,
若x上有is_end标记,则把fail(x)与fa(x)的方案取max再+1作为x的方案;
若x上无is_end标记,虽然理论上不该有方案,但为了递推方便还是把fail(x)与fa(x)的方案取max(不+1)作为方案,不影响结果
代码:
#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
char s[];
struct Trie{
int ch[];
}data[];
int tot;
int is_end[],fail[];
int que[];
void work(int );
void Init();
void buildfail();
int main()
{
int n;
while(scanf("%d",&n)&&n)
work(n);
return ;
}
void work(int n){
int i,j,k,len,ans=;
Init();
for(i=;i<=n;i++){
scanf("%s",s);
len=strlen(s);k=;
for(j=;j<len;j++){
if(!data[k].ch[s[j]-'a'])
data[k].ch[s[j]-'a']=++tot;
k=data[k].ch[s[j]-'a'];
}
is_end[k]=;
}
buildfail();
for(i=;i<=tot;i++)
if(ans<is_end[i])
ans=is_end[i];
printf("%d\n",ans);
}
void Init(){
memset(fail,,sizeof(fail));
memset(is_end,,sizeof(is_end));
memset(data,,sizeof(data));
tot=;
}
void buildfail(){
int h=,t=,i,j,k;
while(h<t){
h++;
for(i=;i<;i++)
if(data[que[h]].ch[i]){
que[++t]=data[que[h]].ch[i];
j=fail[que[h]];
while()
if(data[j].ch[i]&&data[j].ch[i]!=que[t]){
fail[que[t]]=data[j].ch[i];
is_end[que[t]]+=is_end[que[h]]>is_end[fail[que[t]]]?is_end[que[h]]:is_end[fail[que[t]]];
break;
}
else{
if(!j)break;
j=fail[j];
}
if(!fail[que[t]])is_end[que[t]]+=is_end[que[h]];
}
}
}

又及,第一次用SPOJ,感觉还不错;

【SPOJ】MGLAR10 - Growing Strings的更多相关文章

  1. 【SPOJ】NUMOFPAL - Number of Palindromes(Manacher,回文树)

    [SPOJ]NUMOFPAL - Number of Palindromes(Manacher,回文树) 题面 洛谷 求一个串中包含几个回文串 题解 Manacher傻逼题 只是用回文树写写而已.. ...

  2. 【SPOJ】Substrings(后缀自动机)

    [SPOJ]Substrings(后缀自动机) 题面 Vjudge 题意:给定一个长度为\(len\)的串,求出长度为1~len的子串中,出现最多的出现了多少次 题解 出现次数很好处理,就是\(rig ...

  3. 【SPOJ】Longest Common Substring II (后缀自动机)

    [SPOJ]Longest Common Substring II (后缀自动机) 题面 Vjudge 题意:求若干个串的最长公共子串 题解 对于某一个串构建\(SAM\) 每个串依次进行匹配 同时记 ...

  4. 【SPOJ】Longest Common Substring(后缀自动机)

    [SPOJ]Longest Common Substring(后缀自动机) 题面 Vjudge 题意:求两个串的最长公共子串 题解 \(SA\)的做法很简单 不再赘述 对于一个串构建\(SAM\) 另 ...

  5. 【SPOJ】Distinct Substrings(后缀自动机)

    [SPOJ]Distinct Substrings(后缀自动机) 题面 Vjudge 题意:求一个串的不同子串的数量 题解 对于这个串构建后缀自动机之后 我们知道每个串出现的次数就是\(right/e ...

  6. 【SPOJ】Distinct Substrings/New Distinct Substrings(后缀数组)

    [SPOJ]Distinct Substrings/New Distinct Substrings(后缀数组) 题面 Vjudge1 Vjudge2 题解 要求的是串的不同的子串个数 两道一模一样的题 ...

  7. 【SPOJ】Power Modulo Inverted(拓展BSGS)

    [SPOJ]Power Modulo Inverted(拓展BSGS) 题面 洛谷 求最小的\(y\) 满足 \[k\equiv x^y(mod\ z)\] 题解 拓展\(BSGS\)模板题 #inc ...

  8. 【SPOJ】QTREE7(Link-Cut Tree)

    [SPOJ]QTREE7(Link-Cut Tree) 题面 洛谷 Vjudge 题解 和QTREE6的本质是一样的:维护同色联通块 那么,QTREE6同理,对于两种颜色分别维护一棵\(LCT\) 每 ...

  9. 【SPOJ】QTREE6(Link-Cut-Tree)

    [SPOJ]QTREE6(Link-Cut-Tree) 题面 Vjudge 题解 很神奇的一道题目 我们发现点有黑白两种,又是动态加边/删边 不难想到\(LCT\) 最爆力的做法,显然是每次修改单点颜 ...

随机推荐

  1. day04 --class --homework

    # -*- coding: utf-8 -*- # @Time : 2018/12/24 12:10 # @Author : Endless-cloud # @Site : # @File : 04 ...

  2. Libra的第一天

    wuli乖乖,今天是你降生第一天,以后的几年可能我们都会朝夕相处,你的成长就是我的向上,一起加油吧

  3. OO第二单元の小结

    第二单元(线程与电梯问题)总结博客 三次作业的设计策略 第一次:本次作业只有一部电梯,而且不用捎带.因此,我一共设计了两个线程:一个负责管理输入,一个负责电梯运行.同时,我将调度队列设置为单例模式,里 ...

  4. 高斯分布(Gaussian Distribution)的概率密度函数(probability density function)

    高斯分布(Gaussian Distribution)的概率密度函数(probability density function) 对应于numpy中: numpy.random.normal(loc= ...

  5. Python【每日一问】16

    问: [基础题]TCP/UDP/HTTP协议区别 [提高题]在一个二维数组中,每一行都按照从左到右递增的顺序排序,每一列都按照从上到下递增的顺序排序.请完成一个函数,输入这样的一个二维数组和一个整数, ...

  6. android samsung note3  device not found

    descriptiong : android  samsung note3 device not found solution: usb link by PTP, DONE! (be curiosly ...

  7. Mac下安装eclipse(Mac 10.12/JDK/tomcat)

    1.到官网https://www.eclipse.org/downloads/eclipse-packages/下载安装包 2.安装 注意:安装ecllipse时一定要安装JDK先,最新版本的ecli ...

  8. mono for android 百度map binding项目(转)

    好丫小子之前发布过百度地图android SDK的mono for android绑定dll,许多朋友看过之后说想理解是怎么绑定的,现我把绑定的代码发出来. 针对2.1.2版本百度地图android ...

  9. AngularJs双向绑定详解

    双向绑定的三个重要方法: $scope.$apply() $scope.$digest() $scope.$watch() 一.$scope.$watch() 我理解的$watch就是将对某个数据的监 ...

  10. 四大组件之Activity——组件间传递数据的4种常用方法

    在Android中传递数据的方法非常多,本次介绍4中比较常用的数据传递方法: 通过Intent/Bundle传递数据 通过静态变量(static)传递数据:需构建跳转页面相应静态变量http://bl ...