Gene and Gina have a particular kind of farm. Instead of growing animals and vegetables, as
it is usually the case in regular farms, they grow strings. A string is a sequence of characters.
Strings have the particularity that, as they grow, they add characters to the left and/or to the
right of themselves, but they never lose characters, nor insert new characters in the middle.
Gene and Gina have a collection of photos of some strings at different times during their growth.
The problem is that the collection is not annotated, so they forgot to which string each photo
belongs to. They want to put together a wall to illustrate strings growing procedures, but they
need your help to find an appropriate sequence of photos.
Each photo illustrates a string. The sequence of photos must be such that if si comes imme-
diately before si+1 in the sequence, then si+1 is a string that may have grown from si (i.e., si
appears as a consecutive substring of si+1). Also, they do not want to use repeated pictures,
so all strings in the sequence must be different.
Given a set of strings representing all available photos, your job is to calculate the size of the
largest sequence they can produce following the guidelines above.
Gene and Gina have a particular kind of farm. Instead of growing animals and vegetables, as it is usually the case in regular farms, they grow strings. A string is a sequence of characters. Strings have the particularity that, as they grow, they add characters to the left and/or to the right of themselves, but they never lose characters, nor insert new characters in the middle. 
 Gene and Gina have a collection of photos of some strings at different times during their growth. The problem is that the collection is not annotated, so they forgot to which string each photo belongs to. They want to put together a wall to illustrate strings growing procedures, but they need your help to find an appropriate sequence of photos.
Each photo illustrates a string. The sequence of photos must be such that if si comes immediately before si+1 in the sequence, then si+1 is a string that may have grown from si (i.e., si appears as a consecutive substring of si+1). Also, they do not want to use repeated pictures, so all strings in the sequence must be different.
Given a set of strings representing all available photos, your job is to calculate the size of the largest sequence they can produce following the guidelines above.
                --by spoj


大意是有些字符串,从中选一些首尾相接,要求是相邻两串中前串为后串的子串
求最多用多少串
统计以串x为最长串(总母串)的最大方案,再枚举x取max
统计的方法是:
在标记fail指针时,
若x上有is_end标记,则把fail(x)与fa(x)的方案取max再+1作为x的方案;
若x上无is_end标记,虽然理论上不该有方案,但为了递推方便还是把fail(x)与fa(x)的方案取max(不+1)作为方案,不影响结果
代码:
#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
char s[];
struct Trie{
int ch[];
}data[];
int tot;
int is_end[],fail[];
int que[];
void work(int );
void Init();
void buildfail();
int main()
{
int n;
while(scanf("%d",&n)&&n)
work(n);
return ;
}
void work(int n){
int i,j,k,len,ans=;
Init();
for(i=;i<=n;i++){
scanf("%s",s);
len=strlen(s);k=;
for(j=;j<len;j++){
if(!data[k].ch[s[j]-'a'])
data[k].ch[s[j]-'a']=++tot;
k=data[k].ch[s[j]-'a'];
}
is_end[k]=;
}
buildfail();
for(i=;i<=tot;i++)
if(ans<is_end[i])
ans=is_end[i];
printf("%d\n",ans);
}
void Init(){
memset(fail,,sizeof(fail));
memset(is_end,,sizeof(is_end));
memset(data,,sizeof(data));
tot=;
}
void buildfail(){
int h=,t=,i,j,k;
while(h<t){
h++;
for(i=;i<;i++)
if(data[que[h]].ch[i]){
que[++t]=data[que[h]].ch[i];
j=fail[que[h]];
while()
if(data[j].ch[i]&&data[j].ch[i]!=que[t]){
fail[que[t]]=data[j].ch[i];
is_end[que[t]]+=is_end[que[h]]>is_end[fail[que[t]]]?is_end[que[h]]:is_end[fail[que[t]]];
break;
}
else{
if(!j)break;
j=fail[j];
}
if(!fail[que[t]])is_end[que[t]]+=is_end[que[h]];
}
}
}

又及,第一次用SPOJ,感觉还不错;

【SPOJ】MGLAR10 - Growing Strings的更多相关文章

  1. 【SPOJ】NUMOFPAL - Number of Palindromes(Manacher,回文树)

    [SPOJ]NUMOFPAL - Number of Palindromes(Manacher,回文树) 题面 洛谷 求一个串中包含几个回文串 题解 Manacher傻逼题 只是用回文树写写而已.. ...

  2. 【SPOJ】Substrings(后缀自动机)

    [SPOJ]Substrings(后缀自动机) 题面 Vjudge 题意:给定一个长度为\(len\)的串,求出长度为1~len的子串中,出现最多的出现了多少次 题解 出现次数很好处理,就是\(rig ...

  3. 【SPOJ】Longest Common Substring II (后缀自动机)

    [SPOJ]Longest Common Substring II (后缀自动机) 题面 Vjudge 题意:求若干个串的最长公共子串 题解 对于某一个串构建\(SAM\) 每个串依次进行匹配 同时记 ...

  4. 【SPOJ】Longest Common Substring(后缀自动机)

    [SPOJ]Longest Common Substring(后缀自动机) 题面 Vjudge 题意:求两个串的最长公共子串 题解 \(SA\)的做法很简单 不再赘述 对于一个串构建\(SAM\) 另 ...

  5. 【SPOJ】Distinct Substrings(后缀自动机)

    [SPOJ]Distinct Substrings(后缀自动机) 题面 Vjudge 题意:求一个串的不同子串的数量 题解 对于这个串构建后缀自动机之后 我们知道每个串出现的次数就是\(right/e ...

  6. 【SPOJ】Distinct Substrings/New Distinct Substrings(后缀数组)

    [SPOJ]Distinct Substrings/New Distinct Substrings(后缀数组) 题面 Vjudge1 Vjudge2 题解 要求的是串的不同的子串个数 两道一模一样的题 ...

  7. 【SPOJ】Power Modulo Inverted(拓展BSGS)

    [SPOJ]Power Modulo Inverted(拓展BSGS) 题面 洛谷 求最小的\(y\) 满足 \[k\equiv x^y(mod\ z)\] 题解 拓展\(BSGS\)模板题 #inc ...

  8. 【SPOJ】QTREE7(Link-Cut Tree)

    [SPOJ]QTREE7(Link-Cut Tree) 题面 洛谷 Vjudge 题解 和QTREE6的本质是一样的:维护同色联通块 那么,QTREE6同理,对于两种颜色分别维护一棵\(LCT\) 每 ...

  9. 【SPOJ】QTREE6(Link-Cut-Tree)

    [SPOJ]QTREE6(Link-Cut-Tree) 题面 Vjudge 题解 很神奇的一道题目 我们发现点有黑白两种,又是动态加边/删边 不难想到\(LCT\) 最爆力的做法,显然是每次修改单点颜 ...

随机推荐

  1. JS对Date的扩展,将 Date 转化为指定格式的String

    /** * 对Date的扩展,将 Date 转化为指定格式的String * 月(M).日(d).12小时(h).24小时(H).分(m).秒(s).周(E).季度(q) 可以用 1-2 个占位符 * ...

  2. Python基础部分的疑惑解析——运算符和数据类型(3)

    补充上一篇: #! /user/bin/env python   代码内声明这一个就可以用1.py类似的文件直接执行,但是要在linux内加权限, 不需要在前面加python 1.py执行了.文件可以 ...

  3. 并发编程>>四种实现方式(三)

    概述 1.继承Thread 2.实现Runable接口 3.实现Callable接口通过FutureTask包装器来创建Thread线程 4.通过Executor框架实现多线程的结构化,即线程池实现. ...

  4. java内存的分配策略

    1.概述 本文是<深入理解java虚拟机>(周志明著)3.6节的笔记整理,文章结构也与书上相同,讲述的是几条最普遍的内存分配策略. 2.对象优先在Eden分配 ** 大多数情况下,对象在新 ...

  5. C. Edgy Trees Codeforces Round #548 (Div. 2) 【连通块】

    一.题面 here 二.分析 这题刚开始没读懂题意,后来明白了,原来就是一个数连通块里点数的问题.首先在建图的时候,只考虑红色路径上的点.为什么呢,因为为了不走红色的快,那么我们可以反着想只走红色的路 ...

  6. SpringMVC初写(五)拦截器

    在系统开发过程中,拦截器的使用可以使我们实现一些需求.如:登录认证,权限管理等,拦截器的工作核心就是将一些工作流程进行统一处理 拦截器和过滤器的区别: 过滤器过滤的是请求路径,拦截器拦截的各层方法的映 ...

  7. Centos7安装python3.7.1并与python2共存

    转自:http://www.cnblogs.com/JahanGu/p/7452527.html参考:https://www.jb51.net/article/104326.htm 1. 备份原来的p ...

  8. (转)【干货】MySQL 5.7 多实例(多进程)配置教程

    原文:https://blog.csdn.net/zougen/article/details/79567744 https://klionsec.github.io/2017/09/20/mysql ...

  9. unity 优化之overdraw查看

    scene视图里面能直接看,打开左上角那个下拉选项,选择overdraw就行 转载篇在game视图下查看overdraw:       https://blog.csdn.net/complicate ...

  10. A GDB Tutorial with Examples--转

    http://www.cprogramming.com/gdb.html A GDB Tutorial with Examples By Manasij Mukherjee A good debugg ...