机器学习---用python实现最小二乘线性回归算法并用随机梯度下降法求解 (Machine Learning Least Squares Linear Regression Application SGD)
在《机器学习---线性回归(Machine Learning Linear Regression)》一文中,我们主要介绍了最小二乘线性回归算法以及简单地介绍了梯度下降法。现在,让我们来实践一下吧。
先来回顾一下用最小二乘法求解参数的公式:
。
(其中:
,
,
)
再来看一下随机梯度下降法(Stochastic Gradient Descent)的算法步骤:

除了算法中所需的超参数α(学习速率,代码中写为lr)和epsilon(误差值),我们增加了另一个超参数epoch(迭代次数)。此外,为方便起见,在代码中我们用w代替θ。
我们自己创建了一组数据,是最简单的一元线性回归,以便画图展示。由于整个过程基本上就是上述算法步骤的重复,故在此次不一一分解了,请自行查看完整代码。至于学习速率alpha的选择,请查看:如何选择梯度下降法中的学习速率α(Gradient Descent Alpha)。
完整代码如下:
import matplotlib.pyplot as plt
fig,ax=plt.subplots()
import numpy as np #创建数据
x=np.linspace(0,100,10).reshape(10,1)
rng=np.random.RandomState(4)
noise=rng.randint(-10,10,size=(10,1))*4
y=4*x+4+noise class Linear_Regression:
def __init__(self):
self._w = None def fit(self, X, y, lr=0.01, epsilon=0.01, epoch=1000):
#训练数据
#将输入的X,y转换为numpy数组
X, y = np.asarray(X, np.float32), np.asarray(y, np.float32)
#给X增加一列常数项
X=np.hstack((X,np.ones((X.shape[0],1))))
#初始化w
self._w = np.zeros((X.shape[1],1)) for _ in range(epoch):
#随机选择一组样本计算梯度
random_num=np.random.choice(len(X))
x_random=X[random_num].reshape(1,2)
y_random=y[random_num] gradient=(x_random.T)*(np.dot(x_random,self._w)-y_random) #如果收敛,那么停止迭代
if (np.abs(self._w-lr*gradient)<epsilon).all():
break
#否则,更新w
else:
self._w =self._w-lr*gradient return self._w def print_results(self):
print("参数w:{}".format(self._w))
print("回归拟合线:y={}x+{}".format(self._w[0],self._w[1])) def draw_pics(self,X):
#画出原始数据
ax.scatter(X,y,marker="o")
ax.set_xlabel("x")
ax.set_ylabel("y") #画出拟合线
line_x=np.linspace(0,100,10)
line_y=self._w[0]*line_x+self._w[1]
ax.plot(line_x,line_y) def predict(self,x):
x=np.asarray(x, np.float32)
x=x.reshape(x.shape[0],1)
x=np.hstack((x,np.ones((x.shape[0],1))))
return np.dot(x,self._w) if __name__=="__main__":
Regression=Linear_Regression()
Regression.fit(x,y,lr=0.0001,epsilon=0.001,epoch=20)
Regression.print_results()
Regression.draw_pics(x)
运行结果:
参数w:[[3.95933261]
[0.06683964]]
回归拟合线:y=[3.95933261]x+[0.06683964]
画出的拟合线:

机器学习---用python实现最小二乘线性回归算法并用随机梯度下降法求解 (Machine Learning Least Squares Linear Regression Application SGD)的更多相关文章
- 机器学习---最小二乘线性回归模型的5个基本假设(Machine Learning Least Squares Linear Regression Assumptions)
在之前的文章<机器学习---线性回归(Machine Learning Linear Regression)>中说到,使用最小二乘回归模型需要满足一些假设条件.但是这些假设条件却往往是人们 ...
- 谷歌机器学习速成课程---降低损失 (Reducing Loss):随机梯度下降法
在梯度下降法中,批量指的是用于在单次迭代中计算梯度的样本总数.到目前为止,我们一直假定批量是指整个数据集.就 Google 的规模而言,数据集通常包含数十亿甚至数千亿个样本.此外,Google 数据集 ...
- sklearn中实现随机梯度下降法(多元线性回归)
sklearn中实现随机梯度下降法 随机梯度下降法是一种根据模拟退火的原理对损失函数进行最小化的一种计算方式,在sklearn中主要用于多元线性回归算法中,是一种比较高效的最优化方法,其中的梯度下降系 ...
- ubuntu之路——day8.1 深度学习优化算法之mini-batch梯度下降法
所谓Mini-batch梯度下降法就是划分训练集和测试集为等分的数个子集,比如原来有500W个样本,将其划分为5000个baby batch,每个子集中有1000个样本,然后每次对一个mini-bat ...
- [机器学习Lesson 2]代价函数之线性回归算法
本章内容主要是介绍:单变量线性回归算法(Linear regression with one variable) 1. 线性回归算法(linear regression) 1.1 预测房屋价格 该问题 ...
- 机器学习算法之旅A Tour of Machine Learning Algorithms
In this post we take a tour of the most popular machine learning algorithms. It is useful to tour th ...
- 谷歌机器学习速成课程---3降低损失 (Reducing Loss):梯度下降法
迭代方法图(图 1)包含一个标题为“计算参数更新”的华而不实的绿框.现在,我们将用更实质的方法代替这种华而不实的算法. 假设我们有时间和计算资源来计算 w1 的所有可能值的损失.对于我们一直在研究的回 ...
- 梯度下降法VS随机梯度下降法 (Python的实现)
# -*- coding: cp936 -*- import numpy as np from scipy import stats import matplotlib.pyplot as plt # ...
- tensorflow实现svm iris二分类——本质上在使用梯度下降法求解线性回归(loss是定制的而已)
iris二分类 # Linear Support Vector Machine: Soft Margin # ---------------------------------- # # This f ...
随机推荐
- 「CTS2019」珍珠
「CTS2019」珍珠 解题思路 看了好多博客才会,问题即要求有多少种方案满足数量为奇数的变量数 \(\leq n-2m\).考虑容斥,令 \(F(k)\) 为恰好有 \(n\) 个变量数量为奇数的方 ...
- LOJ2267 SDOI2017 龙与地下城 FFT、概率密度函数、Simpson
传送门 概率论神仙题-- 首先一个暴力做法是设\(f_{i,j}\)表示前\(i\)个骰子摇出点数和为\(j\)的概率,不难发现DP的过程是一个多项式快速幂,FFT优化可以做到\(O(XYlog(XY ...
- 解析:让你弄懂redux原理
作者: HerryLo 本文永久有效链接: https://github.com/AttemptWeb...... Redux是JavaScript状态容器,提供可预测化的状态管理. 在实际开发中,常 ...
- Python之TensorFlow的卷积神经网络-5
一.卷积神经网络(Convolutional Neural Networks, CNN)是一类包含卷积计算且具有深度结构的前馈神经网络(Feedforward Neural Networks),是深度 ...
- Oracle开放1521端口 telnet不通解决办法
在windosw虚拟机server2012上安装Oracle数据库后,远程连接失败,报 java.sql.SQLException: The Network Adapter could not est ...
- 强大的VIM
个人感觉,vim用熟了,比任何编辑器都好用,VIM的许多特性节省了时间和击键次数,并可以完成一些其他编辑器无法完成的功能,这里在网上找了几个经典案例,记录一下. 与大部分其它编辑器不同,进入 Vim ...
- 怎样用 vue-i18n这个结合vue的$t来实现通过data传值的翻译
<el-row class="searchForm"> <template v-for="(item,index) in searchConfig&qu ...
- python3 中的try 异常调试与 raise 异常抛出
一.什么是异常? 异常即是一个事件,该事件会在程序执行过程中发生,影响了程序的正常执行. 一般情况下,在Python无法正常处理程序时就会发生一个异常. 异常是Python对象,表示一个错误. 当Py ...
- Struts框架笔记04_拦截器_标签库
目录 1. Struts2的拦截器 1.1 拦截器概述 1.2 拦截器的实现原理 1.3 Struts的执行流程 1.4 拦截器入门 1.4.1 环境搭建 1.4.2 编写拦截器 1.4.3 配置拦截 ...
- Java中创建线程主要有三种方式
一.继承Thread类创建线程类 (1)定义Thread类的子类,并重写该类的run方法,该run方法的方法体就代表了线程要完成的任务.因此把run()方法称为执行体. (2)创建Thread子类的实 ...