Automatic Ship Detection in Optical Remote Sensing Images Based on Anomaly Detection and SPP-PCANet
基于异常检测和 PCANet 的船舶目标检测
船舶检测会遇到三个问题:
1、船低对比度
2、海平面情况复杂
3、云,礁等错误检测
实验步骤:
1、预处理海陆边界,掩膜陆地
2、异常检测获得感兴趣区域,多变量高斯分布模型,比最大类间方差和迭代阈值分割效果好
3、PCANet 获得特征,后面接SPP,获得多尺度特征,用SVM分类,最大值抑制得到结果
补充知识:
PCANet 是一个简化的深度学习网络,不用卷积池化等操作,PCANet提出者认为,经典的CNN存在的问题是参数训练时间过长且需要特别的调参技巧。因此他们希望能找到一种训练过程更为简单,且能适应不同任务、不同数据类型的网络模型。
网络用PCA去学习卷积神经网络的卷积核,后面用二值化和哈希去重置像素点,可以非常容易和有效地设计和学习。
Automatic Ship Detection in Optical Remote Sensing Images Based on Anomaly Detection and SPP-PCANet的更多相关文章
- Computer Vision_33_SIFT:Remote Sensing Image Registration With Modified SIFT and Enhanced Feature Matching——2017
此部分是计算机视觉部分,主要侧重在底层特征提取,视频分析,跟踪,目标检测和识别方面等方面.对于自己不太熟悉的领域比如摄像机标定和立体视觉,仅仅列出上google上引用次数比较多的文献.有一些刚刚出版的 ...
- Missing Data Reconstruction in Remote Sensing Image With a Unified Spatial–Temporal–Spectral Deep Convolutional Neural Network(缺失数据补全,时空谱网络)
摘要 文章针对修复坏波段(AQUA B6),恢复条带损失,恢复云污染提出了一个深度学习网络结构,他说 To date, to the best of our knowledge, no studies ...
- Computer Vision_33_SIFT:Robust scale-invariant feature matching for remote sensing image registration——2009
此部分是计算机视觉部分,主要侧重在底层特征提取,视频分析,跟踪,目标检测和识别方面等方面.对于自己不太熟悉的领域比如摄像机标定和立体视觉,仅仅列出上google上引用次数比较多的文献.有一些刚刚出版的 ...
- 通过整合遥感数据和社交媒体数据来进行城市土地利用的分类( Classifying urban land use by integrating remote sensing and social media data)DOI: 10.1080/13658816.2017.1324976 20.0204
Classifying urban land use by integrating remote sensing and social media data Xiaoping Liu, Jialv ...
- Remote Sensing Images Semantic Segmentation with General Remote Sensing Vision Model via a Self-Supervised Contrastive Learning Method
论文阅读: Remote Sensing Images Semantic Segmentation with General Remote Sensing Vision Model via a Sel ...
- 《3-D Deep Learning Approach for Remote Sensing Image Classification》论文笔记
论文题目<3-D Deep Learning Approach for Remote Sensing Image Classification> 论文作者:Amina Ben Hamida ...
- 论文笔记:Chaotic Invariants of Lagrangian Particle Trajectories for Anomaly Detection in Crowded Scenes
[原创]Liu_LongPo 转载请注明出处 [CSDN]http://blog.csdn.net/llp1992 近期在关注 crowd scene方面的东西.由于某些原因须要在crowd scen ...
- PP: Robust Anomaly Detection for Multivariate Time Series through Stochastic Recurrent Neural Network
PROBLEM: OmniAnomaly multivariate time series anomaly detection + unsupervised 主体思想: input: multivar ...
- Isolation-based Anomaly Detection
Anomalies are data points that are few and different. As a result of these properties, we show that, ...
随机推荐
- Net Core 自定义 Middleware 加密解密
前言:第一次写文章,有问题请轻喷 当前使用 Net Core 版本 2.1.3 我们经常在开发中需要把实体的主键 Id 传输到前端,但是在Get的时候又不想让前端能看到明文,我们通常会加密这些数据,所 ...
- Idea创建一个SpringBoot工程
1.打开Idea,点击新建工程 File—New—Project 2.点击下一步后可能会很一直在请求,或者直接报如下错误, 解决办法:直接点OK后再点Previous返回上一步,继续重新Next 3. ...
- command injection命令注入
命令注入 是指程序中有调用系统命令的部分,例如输入ip,程序调用系统命令ping这个ip.如果在ip后面加一个&&.&.|.||命令拼接符号再跟上自己需要执行的系统命令 在pi ...
- 英语secuerity证券
中文名:证券 外文名:security.secuerity 类别:经济权益凭证统称 组成:资本证券.货币证券和商品证券 作用:用来证明持者权益的法律凭证 发展历程 世界 1603年,在共和国大议长奥登 ...
- 解决IDEA Java Web项目没问题,但部署时出错的问题
如果确定代码没问题,那多半是项目中用到的库没有被Tomcat复制到部署位置的lib目录下. 点击调试/运行,看到控制台Tomcat在部署,但一直不弹出浏览器页面,Tomcat控制台报错如下: 是在Ar ...
- MapReduce1.x与MapReduce2.x差异
一.MapReduce1.x简介 1.图解 2.JobTracker 主节点,单点,负责调度所有的作用和监控整个集群的资源负载. 3.TaskTracker 从节点,自身节点资源管理和JobTrack ...
- jQuery知识梳理20190817
目录 jQuery知识梳理20190817 1. jQuery的特征 2. jQuery的两把利器 2.1 jQuery核心函数 2.2 jQuery核心对象 3. jQuery核心函数详解 4. j ...
- MySQL Lock--MySQL INSERT加锁学习
准备测试数据: ## 开启InnoDB Monitor SET GLOBAL innodb_status_output=ON; SET GLOBAL innodb_status_output_lock ...
- Linux指令(文件目录类)
pwd 显示当前工作目录的绝对路径 ls [选项] [目录或是文件] 常用选项 -a 显示当前目录所有的文件和目录,包括隐藏的 -l 以列表的方式显示信息 cd [参数] (功能描述:切换到指定目录) ...
- opencv图像阈值操作
使用threshold方法和adaptivethreshold方法对图像进行阈值分割操作. 1.使用threshold方法,设置一个阈值,将大于阈值的值变换为最大值,小于阈值的值变换为0. #-*- ...