多目标跟踪笔记二:Efficient Algorithms for Finding the K Best Paths Through a Trellis
Abstract
本文提出了一种新的方法来寻找不相交k最优路径。最坏情况下计算复杂度为N3log(N)。该方法比WVD算法(https://www.cnblogs.com/walker-lin/p/11051983.html)速度更快。
Introduction
WVD算法中,计算复杂度随着虚警(false alarms)的增加呈指数增加,这限制了算法适用更多的场景。
本文提出的算法are based on a transformation of the K-path trellis problem into an equivalent minimum cost nenvork flow (MCNF) problem。而解决MCNF问题的复杂度随着measurements总数的增加呈多项式增加。
equivalent minimum cost nenvork flow formultion
不相交k最优路径:a)不相交;b)k条路径的总成本最少。

1)如果满足:
a)不要求路径不相交;
b)添加第0层和第T+1层,第0层和第T+1层都只有一个node;第0层到第1层、第T层到第T+1层的arc cost都为0;
c)第0层有K个单位的输入flow,第T+1层有k个单位的输出flow。
则不相交k最优路径问题 → MCNF问题:

此时,k最优路径(不要求不相交)转换为:


其中,xij表示arc flow,cij表示arc cost。
2)为了满足不相交约束,for each set Nt,t = 2,...,T- 1, 对每一个node添加一个对应node*,且node到node*的arc cost等于0,


那么,不相交k最优路径可以转换为以下问题:


nt中的node最多被使用一次。
算法性能比较
假设Nt=M,t=1,2,......,T。
算法1:WVD算法;算法2:ε-relaxation algorithm in [Dual coordinate step methods for linear network flow problems]。
计算法复杂度:
算法1:O(W),其中
;
算法2:
,其中C是cij的最大值。
空间复杂度:
算法1:O(V),其中
;
算法2:O(M2T)
多目标跟踪笔记二:Efficient Algorithms for Finding the K Best Paths Through a Trellis的更多相关文章
- amazeui学习笔记二(进阶开发4)--JavaScript规范Rules
amazeui学习笔记二(进阶开发4)--JavaScript规范Rules 一.总结 1.注释规范总原则: As short as possible(如无必要,勿增注释):尽量提高代码本身的清晰性. ...
- Java IO学习笔记二:DirectByteBuffer与HeapByteBuffer
作者:Grey 原文地址:Java IO学习笔记二:DirectByteBuffer与HeapByteBuffer ByteBuffer.allocate()与ByteBuffer.allocateD ...
- 《CMake实践》笔记二:INSTALL/CMAKE_INSTALL_PREFIX
<CMake实践>笔记一:PROJECT/MESSAGE/ADD_EXECUTABLE <CMake实践>笔记二:INSTALL/CMAKE_INSTALL_PREFIX &l ...
- jQuery源码笔记(二):定义了一些变量和函数 jQuery = function(){}
笔记(二)也分为三部分: 一. 介绍: 注释说明:v2.0.3版本.Sizzle选择器.MIT软件许可注释中的#的信息索引.查询地址(英文版)匿名函数自执行:window参数及undefined参数意 ...
- Mastering Web Application Development with AngularJS 读书笔记(二)
第一章笔记 (二) 一.scopes的层级和事件系统(the eventing system) 在层级中管理的scopes可以被用做事件总线.AngularJS 允许我们去传播已经命名的事件用一种有效 ...
- Python 学习笔记二
笔记二 :print 以及基本文件操作 笔记一已取消置顶链接地址 http://www.cnblogs.com/dzzy/p/5140899.html 暑假只是快速过了一遍python ,现在起开始仔 ...
- WPF的Binding学习笔记(二)
原文: http://www.cnblogs.com/pasoraku/archive/2012/10/25/2738428.htmlWPF的Binding学习笔记(二) 上次学了点点Binding的 ...
- webpy使用笔记(二) session/sessionid的使用
webpy使用笔记(二) session的使用 webpy使用系列之session的使用,虽然工作中使用的是django,但是自己并不喜欢那种大而全的东西~什么都给你准备好了,自己好像一个机器人一样赶 ...
- AJax 学习笔记二(onreadystatechange的作用)
AJax 学习笔记二(onreadystatechange的作用) 当发送一个请求后,客户端无法确定什么时候会完成这个请求,所以需要用事件机制来捕获请求的状态XMLHttpRequest对象提供了on ...
随机推荐
- Python FAQ2:赋值、浅拷贝、深拷贝的区别?
在Python编程过程中,经常会遇到对象的拷贝,如果不理解浅拷贝和深拷贝的概念,你的代码就可能出现一些问题.所以,在这里按个人的理解谈谈它们之间的区别. 一.赋值(assignment) 在<P ...
- java线程和线程池的使用
java线程和线程池 一.创建多线程的方式 java多线程非经常见.怎样使用多线程,怎样创建线程.java中有两种方式,第一种是让自己的类实现Runnable接口.另外一种是让自己的类继承Thread ...
- 产品架构model
- leecode 题解 || Merge k Sorted Lists 问题
problem: Merge k sorted linked lists and return it as one sorted list. Analyze and describe its comp ...
- ios14--购物车优化2
// // ViewController.m // 03-综合练习 // // Created by xiaomage on 15/12/28. // Copyright © 2015年 小码哥. A ...
- P3052 [USACO12MAR]摩天大楼里的奶牛Cows in a Skyscraper 状压dp
这个状压dp其实很明显,n < 18写在前面了当然是状压.状态其实也很好想,但是有点问题,就是如何判断空间是否够大. 再单开一个g数组,存剩余空间就行了. 题干: 题目描述 A little k ...
- linux 条件测试 ******
文件状态测试 -b filename 当filename 存在并且是块文件时返回真(返回0) -c filename 当filename 存在并且是字符文件时返回真 -d pathname 当path ...
- ural 1012. K-based Numbers. Version 2(大数dp)
和1009相同,只是n达到了180位,可以模拟大数加和大数乘,这里用的java中的大数. import java.math.BigInteger; import java.util.Scanner; ...
- Python基础数据类型(五) dict字典
字典dict{} 字典数字自动排序 enumerate 枚举 for i,k in enumerate(dic,1) #第二个参数默认不写就是0 ---枚举 print(i,k) dict,以{}来表 ...
- BZOJ 3473
思路: CF原题 ZYF有题解 O(nlog^2n) //By SiriusRen #include <bits/stdc++.h> using namespace std; ; ]; i ...