莎拉公主的困惑(bzoj 2186)
Description
大富翁国因为通货膨胀,以及假钞泛滥,政府决定推出一项新的政策:现有钞票编号范围为1到N的阶乘,但是,政府只发行编号与M!互质的钞票。房地产第一大户沙拉公主决定预测一下大富翁国现在所有真钞票的数量。现在,请你帮助沙拉公主解决这个问题,由于可能张数非常大,你只需计算出对R取模后的答案即可。R是一个质数。
Input
第一行为两个整数T,R。R<=10^9+10,T<=10000,表示该组中测试数据数目,R为模后面T行,每行一对整数N,M,见题目描述 m<=n
Output
共T行,对于每一对N,M,输出1至N!中与M!素质的数的数量对R取模后的值
Sample Input
4 2
Sample Output
数据范围:
对于100%的数据,1 < = N , M < = 10000000
/*
因为M<=N,所以M!|N!,我们很容易知道如下结论
对于两个正整数m和n,如果n是m的倍数,那么1->n中与m互素的数的个数为(n/m)φ(m)
本结论是很好证明的,因为1->m中与m互素的个数为φ(m),又知道(i,m)=(i+km,m),所以
结论成立。那么对于本题,答案就是
(N!/M!)φ(M!)=(N!/M!)M!(1-1/p1)(1-1/p2)...(i-1/pk)
=N!(1-1/p1)(1-1/p2)...(i-1/pk)
其中pi为小于等于M的所有素数,先筛选出来即可。由于最终答案对一个质数取模,所以要用逆元,这里
求逆元就有技巧了,用刚刚介绍的递推法预处理,否则会TLE的。
*/
#include<cstdio>
#include<iostream>
#include<bitset>
#define N 10000010
#define lon long long
using namespace std;
lon ans1[N],ans2[N],inv[N];
bitset<N> prime;
void get_prime(){
prime.set();
for(int i=;i<N;i++){
if(prime[i]){
for(int j=i+i;j<N;j+=i)
prime[j]=false;
}
}
}
int main(){
get_prime();
int MOD,m,n,T;
scanf("%d%d",&T,&MOD);
ans1[]=;
for(int i=;i<N;i++)
ans1[i]=ans1[i-]*i%MOD;
inv[]=;
for(int i=;i<N;i++){
if(i>=MOD)break;
inv[i]=(MOD-MOD/i)*inv[MOD%i]%MOD;
}
ans2[]=;
for(int i=;i<N;i++){
if(prime[i]){
ans2[i]=ans2[i-]*(i-)%MOD;
ans2[i]=ans2[i]*inv[i%MOD]%MOD;
}
else ans2[i]=ans2[i-];
}
while(T--){
scanf("%d%d",&n,&m);
lon ans=ans1[n]*ans2[m]%MOD;
printf("%lld\n",ans);
}
return ;
}
莎拉公主的困惑(bzoj 2186)的更多相关文章
- [BZOJ 2186] [Sdoi2008] 沙拉公主的困惑 【欧拉函数】
题目链接:BZOJ - 2186 题目分析 题目要求出 [1, n!] 中有多少数与 m! 互质.(m <= n) 那么在 [1, m!] 中有 phi(m!) 个数与 m! 互质,如果一个数 ...
- [BZOJ 2186][SDOI 2008] 莎拉公主的困惑
2186: [Sdoi2008]沙拉公主的困惑 Time Limit: 10 Sec Memory Limit: 259 MBSubmit: 4519 Solved: 1560[Submit][S ...
- 【bzoj题解】2186 莎拉公主的困惑
题目传送门. 题意:求\([1,n!]\)中与\(m!\)互质的数的个数,对质数\(R\)取模,\(n\geq m\). 答案应该等于\(\frac{n!}{m!}\phi(m!)=\frac{n!} ...
- Bzoj 2186: [Sdoi2008]沙拉公主的困惑 乘法逆元,线性筛,欧拉函数,数论
2186: [Sdoi2008]沙拉公主的困惑 Time Limit: 10 Sec Memory Limit: 259 MBSubmit: 2560 Solved: 857[Submit][St ...
- 数学(逆元):BZOJ 2186: [Sdoi2008]沙拉公主的困惑
2186: [Sdoi2008]沙拉公主的困惑 Description 大富翁国因为通货膨胀,以及假钞泛滥,政府决定推出一项新的政策:现有钞票编号范围为1到N的阶乘,但是,政府只发行编号与M!互质的钞 ...
- 【BZOJ 2186】 2186: [Sdoi2008]沙拉公主的困惑 (欧拉筛,线性求逆元)
2186: [Sdoi2008]沙拉公主的困惑 Description 大富翁国因为通货膨胀,以及假钞泛滥,政府决定推出一项新的政策:现有钞票编号范围为1到N的阶乘,但是,政府只发行编号与M!互质的钞 ...
- BZOJ 2186 沙拉公主的困惑
2186: [Sdoi2008]沙拉公主的困惑 Time Limit: 10 Sec Memory Limit: 259 MB Submit: 3397 Solved: 1164 [Submit] ...
- [BZOJ 2186][Sdoi2008]沙拉公主的困惑(欧拉函数)
题目:http://www.lydsy.com:808/JudgeOnline/problem.php?id=2186 分析: 就是要求1~n!中与m!互质的数的个数 首先m!以内的就是φ(m!) 关 ...
- 2186: [Sdoi2008]沙拉公主的困惑 - BZOJ
Description 大富翁国因为通货膨胀,以及假钞泛滥,政府决定推出一项新的政策:现有钞票编号范围为1到N的阶乘,但是,政府只发行编号与M!互质的钞票.房地产第一大户沙拉公主决定预测一下大富翁国现 ...
随机推荐
- [转]Asp.net Mvc2中重构View的三种方式
本文转自:http://www.cnblogs.com/zhuqil/archive/2010/07/14/asp-net-mvc2-view-refactoring.html 我们在Asp.net ...
- SCANF输入错误
while((a<=0||a>=10)||(b<=0||b>=10)) { fflush(stdin); cout<<" ...
- 锐动SDK置于社区沙龙
北京锐动天地信息技术有限公司成立于2007年9月.多年来一直专注于音视频领域核心技术的研发, 拥有Windows.iOS.Android全平台自主知识产权的领先技术产品. 2011年获得新浪战略投资, ...
- IOS 中使用token机制来验证用户的安全性
登录的业务逻辑{ http:是短连接. 服务器如何判断当前用户是否登录? // 1. 如果是即时通信类:长连接. // 如何保证服务器跟客户端保持长连接状态? // ...
- ListView相关知识点
最近开发接触到了ListView控件,其实简单的需求基本上源生的都可以满足,下面总结一下开发过程中所遇到的关键点: 1.多级ListView联动,保存位置:即切换第一层ListView的item过程中 ...
- Node.js——Stream
介绍 文件流:我们一般对大一点的文件实现stream的方式进行操作 http:显然http.createServer创建过程中的IncomingMessage实现了可读流的接口,ServerRespo ...
- 数据层优化-jdbc连接池简述、druid简介
终于回到既定轨道上了,这一篇讲讲数据库连接池的相关知识,线程池以后有机会再结合项目单独写篇文章(自己给自己挖坑,不知道什么时候能填上),从这一篇文章开始到本阶段结束的文章都会围绕数据库和dao层的优化 ...
- python常见问题一(安装报错)
常见问题一:我在安装python2.7时,提示错误:'An error occurred during the installation of assembly 'Microsoft.VC90.CRT ...
- 1434:【例题2】Best Cow Fences
1434:[例题2]Best Cow Fences 时间限制: 1000 ms 内存限制: 65536 KB提交数: 263 通过数: 146 [题目描述] 给定一个长度为n的 ...
- caffe数据读取
caffe的数据读取分为lmdb和 待清理,包括fast 这个一系列是怎么转换成lmdb数据的