设f[u][i]为u点向下覆盖至少i层并且处理完u的子树的最小代价,f[u][i]为u点向上覆盖至少i层并且处理完u的子树的最小代价

转移的话显然f[u][i]+=f[v][i-1],但是f[u][0]不好确定,可以知道f[u][0]=g[u][0],而g的转移是g[u][j]=min(g[u][j]+f[e[i].to][j],f[u][j+1]+g[e[i].to][j+1]),所以就可以求了

#include<iostream>
#include<cstdio>
using namespace std;
const int N=500005;
int n,d,m,a[N],h[N],cnt,f[N][25],g[N][25];
bool v[N];
struct qwe
{
int ne,to;
}e[N<<1];
int read()
{
int r=0,f=1;
char p=getchar();
while(p>'9'||p<'0')
{
if(p=='-')
f=-1;
p=getchar();
}
while(p>='0'&&p<='9')
{
r=r*10+p-48;
p=getchar();
}
return r*f;
}
void add(int u,int v)
{
cnt++;
e[cnt].ne=h[u];
e[cnt].to=v;
h[u]=cnt;
}
void dfs(int u,int fa)
{
f[u][0]=g[u][0]=v[u]?a[u]:0;
for(int i=1;i<=d;i++)
g[u][i]=a[u];
g[u][d+1]=1e9;
for(int i=h[u];i;i=e[i].ne)
if(e[i].to!=fa)
{
dfs(e[i].to,u);
for(int j=0;j<=d;j++)
g[u][j]=min(g[u][j]+f[e[i].to][j],f[u][j+1]+g[e[i].to][j+1]);
for(int j=d;j>=0;j--)
g[u][j]=min(g[u][j],g[u][j+1]);
f[u][0]=g[u][0];
for(int j=1;j<=d;j++)
f[u][j]+=f[e[i].to][j-1];
for(int j=1;j<=d;j++)
f[u][j]=min(f[u][j],f[u][j-1]);
}
}
int main()
{
n=read(),d=read();//cerr<<n<<" "<<d<<endl;
for(int i=1;i<=n;i++)
a[i]=read();
m=read();
for(int i=1;i<=m;i++)
v[read()]=1;
for(int i=1;i<n;i++)
{
int x=read(),y=read();
add(x,y),add(y,x);
}
dfs(1,0);
printf("%d\n",f[1][0]);
return 0;
}

bzoj 4557: [JLoi2016]侦察守卫【树形dp】的更多相关文章

  1. bzoj 4557: [JLoi2016]侦察守卫 树归

    bzoj 4557: [JLoi2016]侦察守卫 设f[x][j]表示覆盖以x为根的子树的所有应该被覆盖的节点,并且以x为根的子树向下j层全部被覆盖的最小代价. 设g[x][j]表示与x距离大于j全 ...

  2. [BZOJ4557][JLOI2016]侦察守卫(树形DP)

    首先可以确定是树形DP,但这里存在跨子树的信息传递问题,这里就需要“借”的思想. f[i][j]表示i子树内所有点都被覆盖到,且i以外j层内的点都能被覆盖到 的方案数. g[i][j]表示i子树内离i ...

  3. 【BZOJ4557】[JLoi2016]侦察守卫 树形DP

    [BZOJ4557][JLoi2016]侦察守卫 Description 小R和B神正在玩一款游戏.这款游戏的地图由N个点和N-1条无向边组成,每条无向边连接两个点,且地图是连通的.换句话说,游戏的地 ...

  4. BZOJ 4557: [JLoi2016]侦察守卫

    题目大意:每个点有一个放置守卫的代价,同时每个点放置守卫能覆盖到的距离都为d,问覆盖所有给定点的代价是多少. 题解: 树形DP f[x][y]表示x子树中所有点都已经覆盖完,并且x还能向上覆盖y层的最 ...

  5. 4557: [JLoi2016]侦察守卫

    4557: [JLoi2016]侦察守卫 链接 分析: 因为D比较小,所设状态f[i][j]表示子树i内,从i往下第j层及第j层以下都覆盖了的最小代价,g[i][j]表示覆盖完子树内所有点,还可以往上 ...

  6. Bzoj 1131[POI2008]STA-Station (树形DP)

    Bzoj 1131[POI2008]STA-Station (树形DP) 状态: 设\(f[i]\)为以\(i\)为根的深度之和,然后考虑从他父亲转移. 发现儿子的深度及其自己的深度\(-1\) 其余 ...

  7. BZOJ 4557 JLOI2016 侦查守卫 树形dp

    题目链接:https://www.lydsy.com/JudgeOnline/problem.php?id=4557 题意概述: 给出一棵树,每个点付出代价w[i]可以控制距离和它不超过d的点,现在给 ...

  8. 洛谷 P3267 [JLOI2016/SHOI2016]侦察守卫(树形dp)

    题面 luogu 题解 树形\(dp\) \(f[x][y]表示x的y层以下的所有点都已经覆盖完,还需要覆盖上面的y层的最小代价.\) \(g[x][y]表示x子树中所有点都已经覆盖完,并且x还能向上 ...

  9. BZOJ 4726: [POI2017]Sabota? 树形dp

    4726: [POI2017]Sabota? 题目连接: http://www.lydsy.com/JudgeOnline/problem.php?id=4726 Description 某个公司有n ...

随机推荐

  1. iphone 消息推送 实现

    IPhone 消息推送实现 参考 资料 http://blog.csdn.net/victormokai/article/details/39501277 对生成pem 的补充 拿到mac 上生成导出 ...

  2. c 链表之 快慢指针 查找循环节点(转)

    上面分析了 根据这张图 推倒出 数学公式. 刚接触 不能一下弄明白.下面结合上面文章的分析.仔细推倒一下 , 一般设置 快指针 速度是 慢指针的2倍.及 快指针每次遍历两个指针, 慢指针每次遍历1个指 ...

  3. TinyXML中类分析

    TiXmlElement: 对应于XML的元素,定义了对element的相关操作 成员函数: TiXmlElement (const char * in_value); TiXmlElement( c ...

  4. Android中Looper的quit方法和quitSafely方法

    Looper是通过调用loop方法驱动着消息循环的进行: 从MessageQueue中堵塞式地取出一个消息.然后让Handler处理该消息,周而复始.loop方法是个死循环方法. 那怎样终止消息循环呢 ...

  5. scala进阶笔记:函数组合器(combinator)

    collection基础参见之前的博文scala快速学习(二). 本文主要是组合器(combinator),因为在实际中发现很有用.主要参考:http://www.importnew.com/3673 ...

  6. 2016/05/27 php上传文件常见问题总结

    php上传文件常见问题总结 投稿:hebedich 字体:[增加 减小] 类型:转载 时间:2015-02-03我要评论 这篇文章主要介绍了php上传文件常见问题总结,基本上经常碰到的问题的处理都列了 ...

  7. 无节操cocos2d-js游戏

    1.  <看谁抽得快> 2.   <拍苍蝇> 3.   <月饼达人> 4.   <亲吻小游戏> 下面这些是本人做的,需要源代码的可以回复我 ps:全部采 ...

  8. mongodb的安装、配置、常见问题

    一.MongoDB下载 mongodb可以在官网找到下载链接,找到合适的版本进行下载.下载地址->https://www.mongodb.com/download-center?jmp=nav# ...

  9. Vue 中的受控与非受控组件

    Vue 中的受控与非受控组件 熟悉 React 的开发者应该对"受控组件"的概念并不陌生,实际上对于任何组件化开发框架而言,都可以实现所谓的受控与非受控,Vue 当然也不例外.并且 ...

  10. YTU 1055: 输入字符串以及输出

    1055: 输入字符串以及输出 时间限制: 1 Sec  内存限制: 128 MB 提交: 694  解决: 476 题目描述 编写一函数,由实参传来一个字符串,统计此字符串中字母.数字.空格和其它字 ...