一开始设计了四种状态,多了一种已经拐弯但是长度为0的情况,后来发现不用,设012表示没插头,没拐弯的插头,拐了弯的插头,然后转移的话12,21,22都不合法,剩下的转移脑补一下即可,ans只能在11,02,20取,别的都不是合法结束状态

#include<iostream>
#include<cstdio>
#include<cstring>
using namespace std;
const int N=105,mod=20110520,has=739391;
int n,m,a[N][N],b[N],h[1000005],c[2],nw,la,tx,ty,ans;
char s[N];
struct qwe
{
int ne,to[2],va[2];
}f[1000005];
void jia(int &x,int y)
{
x+=y;
x>=mod?x-=mod:0;
}
void add(int x,int v)
{
int u=x%has+1;
for(int i=h[u];i;i=f[i].ne)
if(f[i].to[nw]==x)
{
jia(f[i].va[nw],v);
return;
}
c[nw]++;
f[c[nw]].ne=h[u];
f[c[nw]].to[nw]=x;
f[c[nw]].va[nw]=v;
h[u]=c[nw];
}
int main()
{
scanf("%d%d",&n,&m);
for(int i=1;i<=n;i++)
{
scanf("%s",s+1);
for(int j=1;j<=m;j++)
if(s[j]=='_')
{
if(n>m)
a[i][j]=1;
else
a[j][i]=1;
}
}
if(n<m)
swap(n,m);
for(int i=1;i<=n;i++)
for(int j=1;j<=m;j++)
if(a[i][j])
tx=i,ty=j;
b[0]=1;
for(int i=1;i<=20;i++)
b[i]=(b[i-1]<<2);
c[0]=1,f[1].va[0]=1,f[1].to[0]=0;
for(int i=1;i<=n;i++)
{
for(int j=1;j<=c[nw];j++)
f[j].to[nw]<<=2;
for(int j=1;j<=m;j++)
{
memset(h,0,sizeof(h));
la=nw,nw^=1;
c[nw]=0;
for(int k=1;k<=c[la];k++)
{
int x=f[k].to[la],b1=(x>>(j*2-2))%4,b2=(x>>(j*2))%4,v=f[k].va[la];
if(!a[i][j])
{
if(b1==0&&b2==0)
add(x,v);
}
else if(b1==0&&b2==0)
{
if(a[i+1][j]&&a[i][j+1])
add(x+2*b[j-1]+2*b[j],v);
if(a[i+1][j])
add(x+b[j-1],v);
if(a[i][j+1])
add(x+b[j],v);
}
else if(b1==0&&b2==1)
{
if(a[i][j+1])
add(x+b[j],v);
if(a[i+1][j])
add(x+b[j-1]-b[j],v);
}
else if(b1==0&&b2==2)
{
if(i==tx&&j==ty)
jia(ans,v);
add(x-2*b[j],v);
if(a[i+1][j])
add(x+2*b[j-1]-2*b[j],v);
}
else if(b1==1&&b2==0)
{
if(a[i+1][j])
add(x+b[j-1],v);
if(a[i][j+1])
add(x-b[j-1]+b[j],v);
}
else if(b1==1&&b2==1)
{
if(i==tx&&j==ty)
jia(ans,v);
add(x-b[j-1]-b[j],v);
}
else if(b1==2&&b2==0)
{
if(i==tx&&j==ty)
jia(ans,v);
add(x-2*b[j-1],v);
if(a[i][j+1])
add(x-2*b[j-1]+2*b[j],v);
}
}
}
}
printf("%d\n",ans);
return 0;
}

bzoj 2331: [SCOI2011]地板【插头dp】的更多相关文章

  1. bzoj 2331: [SCOI2011]地板 插头DP

    2331: [SCOI2011]地板 Time Limit: 5 Sec  Memory Limit: 128 MBSubmit: 541  Solved: 239[Submit][Status] D ...

  2. BZOJ 2331 [SCOI2011]地板 ——插头DP

    [题目分析] 经典题目,插头DP. switch 套 switch 代码瞬间清爽了. [代码] #include <cstdio> #include <cstring> #in ...

  3. 【BZOJ】2331: [SCOI2011]地板 插头DP

    [题意]给定n*m的地板,有一些障碍格,要求用L型的方块不重不漏填满的方案数.L型方块是从一个方格向任意两个相邻方向延伸的方块,不能不延伸.n*m<=100. [算法]插头DP [题解]状态0表 ...

  4. 2331: [SCOI2011]地板 插头DP

    国际惯例的题面:十分显然的插头DP.由于R*C<=100,所以min(R,C)<=10,然后就可以愉悦地状压啦.我们用三进制状压,0表示没有插头,1表示有一个必须延伸至少一格且拐弯的插头, ...

  5. 【BZOJ2331】[SCOI2011]地板 插头DP

    [BZOJ2331][SCOI2011]地板 Description lxhgww的小名叫“小L”,这是因为他总是很喜欢L型的东西.小L家的客厅是一个的矩形,现在他想用L型的地板来铺满整个客厅,客厅里 ...

  6. bzoj:2331: [SCOI2011]地板

    Description lxhgww的小名叫“小L”,这是因为他总是很喜欢L型的东西.小L家的客厅是一个的矩形,现在他想用L型的地板来铺满整个客厅,客厅里有些位置有柱子,不能铺地板.现在小L想知道,用 ...

  7. 【BZOJ】2331: [SCOI2011]地板

    题目链接:http://www.lydsy.com/JudgeOnline/problem.php?id=2331 一眼插头DP... 考虑一个L形的东西,要构成它可以划分为两个阶段,即当前线段是拐了 ...

  8. [SCOI2011][bzoj2331] 地板 [插头dp]

    题面: 传送门 思路: 插头dp基础教程 这个L形......第一眼看上去真的是丧病啊 但是仔细想想,实际上也就是拿一堆路径铺满一个棋盘,这个路径还是有限制的 那还有什么好说的,插头dp上啊[雾] 首 ...

  9. BZOJ.1210.[HNOI2004]邮递员(插头DP Hash 高精)

    BZOJ 洛谷 http://www.cnblogs.com/LadyLex/p/7326874.html 插头DP.\(m+1\)个插头的状态需要用三进制表示:\(0\)表示无插头,\(1\)表示是 ...

随机推荐

  1. react 创建组件 (三)PureComponet

    我们知道,当组件的props或者state发生变化的时候:React会对组件当前的Props和State分别与nextProps和nextState进行比较,当发现变化时,就会对当前组件以及子组件进行 ...

  2. 分析Cocos2d-x横版ACT手游源码 1、公共

    直接上代码 不说什么 这一款源码 凝视及多 PublicDef.h 公共头文件 #define NF_PLATFORM 1 //当前版本号(默觉得普通版) //版本号列表 #define NF_PLA ...

  3. 给大二学生——能够再坚持一年的ACM

    [来信] 我是大二学生,就读于一所非常普通的大学.学校ACM基本零起步,去年才開始搞,我大一大二花了非常多时间搞acm,如今不太想放弃.但学校基本没人愿意搞这个. 非常快就要大三了,我一直在纠结要不要 ...

  4. Python调用C/Fortran混合的动态链接库--上篇

    内容描述: 在32位或64位的windows或GNU/Linux系统下利用Python的ctypes和numpy模块调用C/Fortran混合编程的有限元数值计算程序 操作系统及编译环境: 32bit ...

  5. 创建Material Design风格的Android应用--应用主题

    本人全部文章首先公布于个人博客,欢迎关注,地址:http://blog.isming.me 昨天正式公布了android 5,同一时候android developer站点也更新了,添加了创建Mate ...

  6. 解决ubuntu没有/var/log/messages的问题

    1:root身份打开 /etc/rsyslog.d/50-default.conf 2:把注释#去掉 #*.=info;*.=notice;*.=warn;\ # auth,authpriv.none ...

  7. POJ3104 Drying —— 二分

    题目链接:http://poj.org/problem?id=3104 Drying Time Limit: 2000MS   Memory Limit: 65536K Total Submissio ...

  8. xunit输出output到控制台

    1.https://xunit.github.io/docs/capturing-output 里面似乎提到2个方法,第二个方法还需要在配置文件中添加appSetting 这里采用第一种方法, 1.添 ...

  9. YTU 2577: 小数计算——结构体

    2577: 小数计算--结构体 时间限制: 1 Sec  内存限制: 128 MB 提交: 978  解决: 647 题目描述 小数可以看成是一个点和两个数组成的,因此可以定义成一个小数的结构体,现在 ...

  10. hdu 1400 Mondriaan's Dream 解题报告

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1400 题目意思:给出一个h * w的 大 矩形,需要用 1 * 2 的砖块去填充这个大矩形,问填充的方 ...