$n \leq 1000000$的字符串,对每一个子串$i$~$n-i+1$,求他最长的一个既是前缀又是后缀的子串。

这题要求的东西具有“对称性”,不充分利用难以解决。这里的“对称性”不仅指询问是对称的,更指要求的那个公共部分是对称的——不对称的相同的子串对答案没有丝毫贡献。

从贡献的角度入手,就是求每个前缀$i$和后缀$n-i+1$的一个在前缀$i$的末尾的、在后缀$n-i+1$的开头的一个最长公共串。嗯那赶紧二分+哈希。额等等,从$i$向前延伸,从$n-i+1$向后延伸,字符串是否相同,这样一个函数不单调哦。但是,如果您从前缀$i$的中点处和后缀$n-i+1$的中点处向两边分别延伸,这样字符串是否相同就是一个单调函数了。

因此转移战线,枚举对称相同串的中间位置$i$,然后$i$和$n-i+1$分别向两边延伸看最长的相同串多长,用二分+哈希判断。假设这次二分的答案是$2x-1$,那么$ans_{i-x+1}$就会$max$上$2x-1$。但这个串对$i-x+1$到$i$处的答案都是有贡献的,并且贡献每次减2,为了体现这一点只需要最后统计答案时$ans_i \ \ =max(ans_i,ans_{i-1}-2)$即可。

 #include<stdio.h>
#include<string.h>
#include<stdlib.h>
//#include<queue>
//#include<vector>
#include<algorithm>
//#include<iostream>
//#include<assert.h>
using namespace std; int n;
#define maxn 2000011
char s[maxn]; int h1[maxn],h2[maxn],p1[maxn],p2[maxn],mod1=,mod2=;
int geth1(int L,int R) {return (h1[R]-h1[L-]*1ll*p1[R-L+]%mod1+mod1)%mod1;}
int geth2(int L,int R) {return (h2[R]-h2[L-]*1ll*p2[R-L+]%mod2+mod2)%mod2;} int ans[maxn];
int main()
{
scanf("%d%s",&n,s+);
h1[]=h2[]=;
for (int i=;i<=n;i++) h1[i]=(h1[i-]*27ll+s[i]-'a'+)%mod1,h2[i]=(h2[i-]*27ll+s[i]-'a'+)%mod2;
p1[]=p2[]=;
for (int i=;i<=n;i++) p1[i]=p1[i-]*27ll%mod1,p2[i]=p2[i-]*27ll%mod2; for (int i=;i<=(n+)>>;i++) ans[i]=-;
for (int i=;i<=n>>;i++)
{
int L=,R=i,p=n-i+;
while (L<R)
{
int mid=(L+R+)>>,a=i-mid+,b=i+mid-,c=p-mid+,d=p+mid-;
if (geth1(a,b)==geth1(c,d) && geth2(a,b)==geth2(c,d)) L=mid;
else R=mid-;
}
ans[i-L+]=max(ans[i-L+],*L-);
}
for (int i=;i<=(n+)>>;i++)
{
ans[i]=max(ans[i],ans[i-]-);
printf("%d ",ans[i]);
}
return ;
}

Codeforces961F. k-substrings的更多相关文章

  1. 【HDU 5030】Rabbit's String (二分+后缀数组)

    Rabbit's String Problem Description Long long ago, there lived a lot of rabbits in the forest. One d ...

  2. hdu 5030 Rabbit&#39;s String(后缀数组&amp;二分法)

    Rabbit's String Time Limit: 40000/20000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others ...

  3. django模型操作

    Django-Model操作数据库(增删改查.连表结构) 一.数据库操作 1.创建model表        

  4. 【POJ 3415】Common Substrings 长度不小于k的公共子串的个数

    长度不小于k的公共子串的个数,论文里有题解,卡了一上午,因为sum没开long long!!! 没开long long毁一生again--- 以后应该早看POJ里的Discuss啊QAQ #inclu ...

  5. POJ-Common Substrings(后缀数组-长度不小于 k 的公共子串的个数)

    题意: 长度不小于 k 的公共子串的个数 分析: 基本思路是计算 A 的所有后缀和 B 的所有后缀之间的最长公共前缀的长度,把最长公共前缀长度不小于 k 的部分全部加起来. 先将两个字符串连起来,中间 ...

  6. POJ 3415 Common Substrings(长度不小于K的公共子串的个数+后缀数组+height数组分组思想+单调栈)

    http://poj.org/problem?id=3415 题意:求长度不小于K的公共子串的个数. 思路:好题!!!拉丁字母让我Wa了好久!!单调栈又让我理解了好久!!太弱啊!! 最简单的就是暴力枚 ...

  7. POJ 3415 Common Substrings 【长度不小于 K 的公共子串的个数】

    传送门:http://poj.org/problem?id=3415 题意:给定两个串,求长度不小于 k 的公共子串的个数 解题思路: 常用技巧,通过在中间添加特殊标记符连接两个串,把两个串的问题转换 ...

  8. Common Substrings POJ - 3415(长度不小于k的公共子串的个数)

    题意: 给定两个字符串A 和 B, 求长度不小于 k 的公共子串的个数(可以相同) 分两部分求和sa[i-1] > len1  sa[i] < len1  和  sa[i-1] < ...

  9. POJ - 3415 Common Substrings(后缀数组求长度不小于 k 的公共子串的个数+单调栈优化)

    Description A substring of a string T is defined as: T( i, k)= TiTi+1... Ti+k-1, 1≤ i≤ i+k-1≤| T|. G ...

  10. CSU-1632 Repeated Substrings (后缀数组)

    Description String analysis often arises in applications from biology and chemistry, such as the stu ...

随机推荐

  1. 关于自动化测试环境的集成(Jenkins+RobotFramework+TestLink+SVN)

    本人主要从事网络安全产品的测试,由于一些产品功能在后期稳定后每个版本的迭代仍需要投入大量的时间和精力去测试,所以近期计划逐步的去了解自动化测试的一些内容来节省和解放一些资源.由于自己并没有什么编码基础 ...

  2. go语音实战读后感——一

    1.第一个go程序: package main import ( "fmt" ) func main() { fmt.Println("Hello go") } ...

  3. C06 变量和存储类型

    目录 全局变量 局部变量 存储类型 全局变量和局部变量 变量的作用域 作用域:某些事物起作用或有效的区域. 变量的使用范围称为变量的作用域. 变量的作用域决定了变量的可操作性和有效性. C语言变量的作 ...

  4. common-fileupload上传文件

    文件上传在web应用中非常普遍,要在jsp环境中实现文件上传功能是非常容易的,因为网上有许多用java开发的文件上传组件,本文以commons-fileupload组件为例,为jsp应用添加文件上传功 ...

  5. Hibernate的二级缓存使用(spring使用)

    (一)Hibernate的二级缓存策略的一般过程如下: 1) 条件查询的时候,总是发出一条select * from table_name where …. (选择所有字段)这样的SQL语句查询数据库 ...

  6. shelll脚本,常见的脚本题目。

    [root@localhost wyb]# cat 2quan.sh #!/bin/bash #写一个脚本,先要求输入用户名,然后让他输入一个数字,输的如果是数字给输出yes,不是数字,输出no #然 ...

  7. java常用流处理工具StreamTool 常见的InputStream流转字符串, 转字节数组等等

    ava 常用流处理工具 StreamTool ,常见的InputStream 流转字符串, 转字节数组等等 **应用场景: ** 1. 文件上传 2. js / css / img 等文件读取输出. ...

  8. Linux系统状态检测

    基于Red Hat Enterprise Linux 7.5 1.ifconfig ifconfig用于获取和配置网络接口的网络参数,格式为“ifconfig [网络设备] [参数]” 参数: add ...

  9. JavaWeb项目中集成Swagger API文档

    1.增加依赖 <dependency> <groupId>io.springfox</groupId> <artifactId>springfox-sw ...

  10. perl中foreach(二)

    本文和大家重点讨论一下Perl foreach命令的用法,Perl foreach循环中控制变量的值会被Perl自动保存和恢复.当循环进行时,是没有办法改变其值的.循环结束时,变量的值会回到循环开始前 ...