LDA Gibbs Sampling
注意:$\alpha$和$\beta$已知,常用为(和LDA EM算法不同)
1. 为什么可用

LDA模型求解的目标为得到$\phi$和$\theta$
假设现在已知每个单词对应的主题$z$,则可以求得$\theta$的后验分布,求期望得到$E(\theta)$作为每份文档的主题
$E(\theta_{mk})=\frac{n_m^k+\alpha_k}{n_m+\alpha_k}$
同样,可以求得$\phi$的后验分布,求期望$E(\phi)$作为每个主题下生成对应单词的概率
$E(\phi_{kt})=\frac{n_k^t+\beta_t}{n_k+\beta_t}$
现在问题转换为,如何获取$z$
2. 公式推导
Gibbs Sampling固定住除了$z_i$以外的其他$z$,记为$\vec {z_{\neg i}}$,使用以下概率分布生成新的$z_i$:
$p(z_i|\vec {z_{\neg i}},\vec w)\quad=\ \frac{p(\vec z,\vec w)}{p(\vec {z_{\neg i}},\vec {w_{\neg i}}|w_i)p(w_i)}$ $(1)$
由于每个单词之间的生成相互独立,所以$p(\vec {z_{\neg i}},\vec {w_{\neg i}}|w_i)=p(\vec {z_{\neg i}},\vec {w_{\neg i}})$
又$\alpha$的每个分量都想等,$\beta$的每个分量都相等,所以对于两个单词有$p(w_i)=p(w_j)$
$(1)\ \propto \frac{p(\vec z,\vec w)}{p(\vec {z_{\neg i}},\vec {w_{\neg i}})}$
$p(\vec z,\vec w,\phi,\theta|\alpha,\beta)=\prod_{k=1}^K p(\phi_k|\beta)\prod_{m=1}^M p(\theta_m|\alpha)\prod_{n=1}^{N_m}p(z_{mn}|\theta_m)p(w_{mn}|z_{mn},\phi)\\ \quad\quad=(\prod_{k=1}^K p(\phi_k|\beta)\prod_{m=1}^M \prod_{n=1}^{N_m} p(w_{mn}|z_{mn},\phi))^{[1]}\\ \quad\quad\quad *(\prod_{m=1}^M p(\theta_m|\alpha) \prod_{n=1}^{N_m} p(z_{mn}|\theta_m))^{[2]}$
上式中[1]是和$\phi$有关的部分,[2]是和$\theta$有关的部分,对$\phi$,$\theta$积分可得到$p(\vec z,\vec w|\alpha,\beta)$
$[1]=\prod_{k=1}^K \frac{\bigtriangleup \beta+n_k^{(t)}}{\bigtriangleup \beta} \int p(\phi_k|\beta+n_k^{(t)})d\phi_k =\prod_{k=1}^K \frac{\bigtriangleup \beta+n_k^{(t)}}{\bigtriangleup \beta}$,$n_k^{(t)}$为所有单词中,主题为k,单词是t的个数
$[2]=\prod_{m=1}^M \frac{\bigtriangleup \alpha+n_m^{(k)}}{\bigtriangleup \ alpha} \int p(\theta_m|\alpha+n_m^{(k)})d\theta_m=\prod_{m=1}^M \frac{\bigtriangleup \alpha+n_m^{(k)}}{\bigtriangleup \ alpha}$,$n_m^{(k)}$是文档m中,主题为k的个数
结合公式(1):
$p(z_i=k|\vec {z_{\neg i}},\vec w) \propto\quad \frac{\prod_{k=1}^K \bigtriangleup \beta+n_k^{(t)}}{\prod_{k=1}^K \bigtriangleup \beta+n_{k\neg i}^{(t)}}\frac{\prod_{m=1}^M \bigtriangleup \beta+n_k^{(t)}}{\prod_{m=1}^M \bigtriangleup \beta+n_{k\neg i}^{(t)}} \propto \frac{n_{k\neg i}^{(t)}+\beta_t}{\sum_{t=1}^{V} n_{k\neg i}^{(t)}+\beta_t} \frac{n_{m\neg i}^{(k)}+\alpha_k}{\sum_{k=1}^{K} n_{m\neg i}^{(k)}+\alpha_k}$
3. 算法流程
i. 初始化z
ii. 更新z
iii. 得到$\phi$,$\theta$

LDA Gibbs Sampling的更多相关文章
- LDA的Gibbs Sampling求解
<LDA数学八卦>对于LDA的Gibbs Sampling求解讲得很详细,在此不在重复在轮子,直接贴上该文这部分内容. Gibbs Sampling 批注: 1. ...
- 随机采样和随机模拟:吉布斯采样Gibbs Sampling实现文档分类
http://blog.csdn.net/pipisorry/article/details/51525308 吉布斯采样的实现问题 本文主要说明如何通过吉布斯采样进行文档分类(聚类),当然更复杂的实 ...
- 随机采样和随机模拟:吉布斯采样Gibbs Sampling
http://blog.csdn.net/pipisorry/article/details/51373090 吉布斯采样算法详解 为什么要用吉布斯采样 通俗解释一下什么是sampling. samp ...
- Gibbs Sampling深入理解
二维Gibbs Sampling算法 Gibbs Sampling是高维概率分布的MCMC采样方法.二维场景下,状态(x, y)转移到(x’, y’),可以分为三种场景 (1)平行于y轴转移,如上图中 ...
- PRML读书会第十一章 Sampling Methods(MCMC, Markov Chain Monte Carlo,细致平稳条件,Metropolis-Hastings,Gibbs Sampling,Slice Sampling,Hamiltonian MCMC)
主讲人 网络上的尼采 (新浪微博: @Nietzsche_复杂网络机器学习) 网络上的尼采(813394698) 9:05:00 今天的主要内容:Markov Chain Monte Carlo,M ...
- 随机采样方法整理与讲解(MCMC、Gibbs Sampling等)
本文是对参考资料中多篇关于sampling的内容进行总结+搬运,方便以后自己翻阅.其实参考资料中的资料写的比我好,大家可以看一下!好东西多分享!PRML的第11章也是sampling,有时间后面写到P ...
- LDA-math-MCMC 和 Gibbs Sampling
http://cos.name/2013/01/lda-math-mcmc-and-gibbs-sampling/ 3.1 随机模拟 随机模拟(或者统计模拟)方法有一个很酷的别名是蒙特卡罗方法(Mon ...
- 随机采样和随机模拟:吉布斯采样Gibbs Sampling实现高斯分布参数推断
http://blog.csdn.net/pipisorry/article/details/51539739 吉布斯采样的实现问题 本文主要说明如何通过吉布斯采样来采样截断多维高斯分布的参数(已知一 ...
- Gibbs sampling
In statistics and in statistical physics, Gibbs sampling or a Gibbs sampler is aMarkov chain Monte C ...
随机推荐
- C#中委托和事件
目 录 将方法作为方法的参数 将方法绑定到委托 更好的封装性 限制类型能力 范例说明 Observer 设计模式简介 实现范例的Observer 设计模式 .NET 框架中的委托与事件 为什么委托定义 ...
- 2.5 Local Methods in High Dimensions
curse of dimensionality 输入在p维立方体中符合均匀分布,如果需要覆盖比例r的体积,需要每个维度上\(e_p(r)=r^{1/p}\) \(e_{10}(0.01)=0.63,e ...
- 【Java之】多线程学习笔记
最近在学习thinking in java(第三版),本文是多线程这一章的学习总结. --------------------------------------------------------- ...
- hdu 1300 Pearls(dp)
Pearls Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others) Total Sub ...
- _itemFailedToPlayToEnd: { kind = 1; new = 2; old = 0; }
watermark/2/text/aHR0cDovL2Jsb2cuY3Nkbi5uZXQvenVveW91MTMxNA==/font/5a6L5L2T/fontsize/400/fill/I0JBQk ...
- SQL Server DML(SELECT)常见用法(二)
1 引言 上篇讲到SQL Server中DML的基本使用方法,其中SELECT语句是最常用的语句,其功能强大,结构复杂,下面通过例子,具体介绍其使用方法. 2 SELECT查询语句 SELECT语 ...
- [jQuery]无法获取隐藏元素(display:none)宽度(width)和高度(height)的新解决方案
在做茶城网改版工作的时候,又遇到一个新问题,我需要用jQuery写一个通过点击左右图标来翻阅图片的小插件,写好后测试可以正常运行,但是放到Tab中后发现只有第一个Tab中的代码能够正常运行,其它全部罢 ...
- csss3 2D转换
CSS3 转换 通过 CSS3 转换,我们能够对元素进行移动.缩放.转动.拉长或拉伸. 它如何工作? 转换是使元素改变形状.尺寸和位置的一种效果. 您可以使用 2D 或 3D 转换来转换您的元素. 浏 ...
- windows server 2008 应用程序池自动关闭 C:\Windows\system32\RpcProxy\RpcProxy.dll failed to load
Sign In Join Search IIS Home Downloads Learn Reference Solutions Blogs Forums HomeIIS.NET Forums64-b ...
- Java学习—— for循环
For双重循环 /* 循环语句嵌套 */ class ForForTest { public static void main(String[] args) { /*int x,y = 0; for( ...