LDA Gibbs Sampling
注意:$\alpha$和$\beta$已知,常用为(和LDA EM算法不同)
1. 为什么可用

LDA模型求解的目标为得到$\phi$和$\theta$
假设现在已知每个单词对应的主题$z$,则可以求得$\theta$的后验分布,求期望得到$E(\theta)$作为每份文档的主题
$E(\theta_{mk})=\frac{n_m^k+\alpha_k}{n_m+\alpha_k}$
同样,可以求得$\phi$的后验分布,求期望$E(\phi)$作为每个主题下生成对应单词的概率
$E(\phi_{kt})=\frac{n_k^t+\beta_t}{n_k+\beta_t}$
现在问题转换为,如何获取$z$
2. 公式推导
Gibbs Sampling固定住除了$z_i$以外的其他$z$,记为$\vec {z_{\neg i}}$,使用以下概率分布生成新的$z_i$:
$p(z_i|\vec {z_{\neg i}},\vec w)\quad=\ \frac{p(\vec z,\vec w)}{p(\vec {z_{\neg i}},\vec {w_{\neg i}}|w_i)p(w_i)}$ $(1)$
由于每个单词之间的生成相互独立,所以$p(\vec {z_{\neg i}},\vec {w_{\neg i}}|w_i)=p(\vec {z_{\neg i}},\vec {w_{\neg i}})$
又$\alpha$的每个分量都想等,$\beta$的每个分量都相等,所以对于两个单词有$p(w_i)=p(w_j)$
$(1)\ \propto \frac{p(\vec z,\vec w)}{p(\vec {z_{\neg i}},\vec {w_{\neg i}})}$
$p(\vec z,\vec w,\phi,\theta|\alpha,\beta)=\prod_{k=1}^K p(\phi_k|\beta)\prod_{m=1}^M p(\theta_m|\alpha)\prod_{n=1}^{N_m}p(z_{mn}|\theta_m)p(w_{mn}|z_{mn},\phi)\\ \quad\quad=(\prod_{k=1}^K p(\phi_k|\beta)\prod_{m=1}^M \prod_{n=1}^{N_m} p(w_{mn}|z_{mn},\phi))^{[1]}\\ \quad\quad\quad *(\prod_{m=1}^M p(\theta_m|\alpha) \prod_{n=1}^{N_m} p(z_{mn}|\theta_m))^{[2]}$
上式中[1]是和$\phi$有关的部分,[2]是和$\theta$有关的部分,对$\phi$,$\theta$积分可得到$p(\vec z,\vec w|\alpha,\beta)$
$[1]=\prod_{k=1}^K \frac{\bigtriangleup \beta+n_k^{(t)}}{\bigtriangleup \beta} \int p(\phi_k|\beta+n_k^{(t)})d\phi_k =\prod_{k=1}^K \frac{\bigtriangleup \beta+n_k^{(t)}}{\bigtriangleup \beta}$,$n_k^{(t)}$为所有单词中,主题为k,单词是t的个数
$[2]=\prod_{m=1}^M \frac{\bigtriangleup \alpha+n_m^{(k)}}{\bigtriangleup \ alpha} \int p(\theta_m|\alpha+n_m^{(k)})d\theta_m=\prod_{m=1}^M \frac{\bigtriangleup \alpha+n_m^{(k)}}{\bigtriangleup \ alpha}$,$n_m^{(k)}$是文档m中,主题为k的个数
结合公式(1):
$p(z_i=k|\vec {z_{\neg i}},\vec w) \propto\quad \frac{\prod_{k=1}^K \bigtriangleup \beta+n_k^{(t)}}{\prod_{k=1}^K \bigtriangleup \beta+n_{k\neg i}^{(t)}}\frac{\prod_{m=1}^M \bigtriangleup \beta+n_k^{(t)}}{\prod_{m=1}^M \bigtriangleup \beta+n_{k\neg i}^{(t)}} \propto \frac{n_{k\neg i}^{(t)}+\beta_t}{\sum_{t=1}^{V} n_{k\neg i}^{(t)}+\beta_t} \frac{n_{m\neg i}^{(k)}+\alpha_k}{\sum_{k=1}^{K} n_{m\neg i}^{(k)}+\alpha_k}$
3. 算法流程
i. 初始化z
ii. 更新z
iii. 得到$\phi$,$\theta$

LDA Gibbs Sampling的更多相关文章
- LDA的Gibbs Sampling求解
<LDA数学八卦>对于LDA的Gibbs Sampling求解讲得很详细,在此不在重复在轮子,直接贴上该文这部分内容. Gibbs Sampling 批注: 1. ...
- 随机采样和随机模拟:吉布斯采样Gibbs Sampling实现文档分类
http://blog.csdn.net/pipisorry/article/details/51525308 吉布斯采样的实现问题 本文主要说明如何通过吉布斯采样进行文档分类(聚类),当然更复杂的实 ...
- 随机采样和随机模拟:吉布斯采样Gibbs Sampling
http://blog.csdn.net/pipisorry/article/details/51373090 吉布斯采样算法详解 为什么要用吉布斯采样 通俗解释一下什么是sampling. samp ...
- Gibbs Sampling深入理解
二维Gibbs Sampling算法 Gibbs Sampling是高维概率分布的MCMC采样方法.二维场景下,状态(x, y)转移到(x’, y’),可以分为三种场景 (1)平行于y轴转移,如上图中 ...
- PRML读书会第十一章 Sampling Methods(MCMC, Markov Chain Monte Carlo,细致平稳条件,Metropolis-Hastings,Gibbs Sampling,Slice Sampling,Hamiltonian MCMC)
主讲人 网络上的尼采 (新浪微博: @Nietzsche_复杂网络机器学习) 网络上的尼采(813394698) 9:05:00 今天的主要内容:Markov Chain Monte Carlo,M ...
- 随机采样方法整理与讲解(MCMC、Gibbs Sampling等)
本文是对参考资料中多篇关于sampling的内容进行总结+搬运,方便以后自己翻阅.其实参考资料中的资料写的比我好,大家可以看一下!好东西多分享!PRML的第11章也是sampling,有时间后面写到P ...
- LDA-math-MCMC 和 Gibbs Sampling
http://cos.name/2013/01/lda-math-mcmc-and-gibbs-sampling/ 3.1 随机模拟 随机模拟(或者统计模拟)方法有一个很酷的别名是蒙特卡罗方法(Mon ...
- 随机采样和随机模拟:吉布斯采样Gibbs Sampling实现高斯分布参数推断
http://blog.csdn.net/pipisorry/article/details/51539739 吉布斯采样的实现问题 本文主要说明如何通过吉布斯采样来采样截断多维高斯分布的参数(已知一 ...
- Gibbs sampling
In statistics and in statistical physics, Gibbs sampling or a Gibbs sampler is aMarkov chain Monte C ...
随机推荐
- Java 并发专题 :FutureTask 实现预加载数据 在线看电子书、浏览器浏览网页等
继续并发专题~ FutureTask 有点类似Runnable,都可以通过Thread来启动,不过FutureTask可以返回执行完毕的数据,并且FutureTask的get方法支持阻塞. 由于:Fu ...
- session_cache_limiter 及 session 常见问题
我点击后退按钮,为什么之前填写的东西不见 这是因为你使用了session. 解决办法: PHP代码:-------------------------------------------------- ...
- SQL表名,应该用复数还是单数
用单数形式更佳,理由如下: 1.概念直观. 你有一个袋子,里面有好多个苹果,你会说这是个苹果袋.但无论里面有0,1,百万个苹果,它依然是个袋子.表也是如此,表明需要描述清楚,表里面包含的对象,而非有多 ...
- EasyUI选项卡tab页面处理示例
<%@ page language="java" contentType="text/html; charset=UTF-8" pageEncoding= ...
- C++关联容器综合应用:TextQuery小程序
本文介绍C++关联容器综合应用:TextQuery小程序(源自C++ Primer). 关于关联容器的概念及介绍,请参考园子里这篇博文:http://www.cnblogs.com/cy568sear ...
- [置顶] Codeforces Round #190 (Div. 2)(完全)
好久没有写博客了,一直找不到有意义的题可以写,这次也不算多么有意义,只是今天是比较空的一天,趁这个时候写一写. A. B. 有一点贪心,先把每个拿去3的倍数,余下0或1或2,然后三个一起拿. 对于以上 ...
- ASP.NET 4.0升级至ASP.NET 4.5需要注意的地方 【转】
原以为只要在Visual Studio 2012中将每个项目的Target framework设置为.NET Framewor 4.5进行编译,然后在web.config中设置compilation的 ...
- LSH算法原理
原始链接--http://www.jiahenglu.net/NSFC/LSH.html LSH(Location Sensitive Hash),即位置敏感哈希函数.与一般哈希函数不同的是位置敏感性 ...
- Do we need other languages other than C and C++?
There were hundreds of or thousands of programming languages created since the invention of computer ...
- 代理方法keywordAction与Fun的使用
代理是一种特殊的,指向某个方法模块所在的地址.一般来讲,那个方法模块,能够是一个普通的方法,很多其它的时候,是一团匿名的lamda表达式,即一个匿名方法.如今简单理解一下代理的简写方式,即Action ...