SGU 202 The Towers of Hanoi Revisited (DP+递归)
转载请注明出处,谢谢http://blog.csdn.net/ACM_cxlove?viewmode=contents by---cxlove
题意 :n个圆盘,m个柱子的汉诺塔输出步骤。
http://acm.sgu.ru/problem.php?contest=0&problem=202
经典的递归问题,见具体数学第一章
先DP求出最短步骤,并记录路径。
然后 递归输出。
import java.util.*;
import java.io.*;
import java.math.*;
public class Solution {
public static void main(String[] args) {
InputStream inputStream = System.in;
OutputStream outputStream = System.out;
InputReader in = new InputReader(inputStream);
PrintWriter out = new PrintWriter(outputStream);
Task solver = new Task();
solver.solve(in, out);
out.close();
}
}
class Task{
static int dp [][] = new int [70][70];
static int pre[][] = new int [70][70];
static int inf = 100000009;
static int N,M;
Stack s[] = new Stack [70];
int dfs(int n,int m){
if(dp[n][m]!=-1)
return dp[n][m];
dp[n][m]=inf;
for(int i=1;i<n;i++){
int t=dfs(i,m)*2+dfs(n-i,m-1);
if(t<dp[n][m]){
dp[n][m]=t;
pre[n][m]=i;
}
}
return dp[n][m];
}
void move(int u,int v){
System.out.print("move " + s[u].peek() + " from " + u + " to " + v);
if(!s[v].empty())
System.out.print(" atop " + s[v].peek());
s[v].push(s[u].pop());
System.out.println();
}
void gao(int u,int v,int n,int m){
if(n==1){
move(u,v);
return ;
}
if(s[u].size()<pre[n][m]) return ;
for(int mid=1;mid<=M;mid++){
if(mid==u||mid==v) continue;
if(s[mid].empty()||((int)(s[mid].peek())>(int)(s[u].elementAt(s[u].size()-pre[n][m])))){
gao(u,mid,pre[n][m],m);
gao(u,v,n-pre[n][m],m-1);
gao(mid,v,pre[n][m],m);
return ;
}
}
}
void solve(InputReader in,PrintWriter out){
N=in.nextInt();M=in.nextInt();
for(int i=1;i<=N;i++)
for(int j=1;j<=M;j++)
dp[i][j]=-1;
for(int i=1;i<=N;i++)
dp[i][1]=dp[i][2]=inf;
dp[1][1]=0;
for(int i=2;i<=M;i++)
dp[1][i]=1;
dfs(N,M);
System.out.println(dp[N][M]);
for(int i=1;i<=M;i++)
s[i]=new Stack();
for(int i=N;i>=1;i--)
s[1].push(i);
gao(1,M,N,M);
}
}
class InputReader {
public BufferedReader reader;
public StringTokenizer tokenizer; public InputReader(InputStream stream) {
reader = new BufferedReader(new InputStreamReader(stream));
tokenizer = null;
} public String next() {
while (tokenizer == null || !tokenizer.hasMoreTokens()) {
try {
tokenizer = new StringTokenizer(reader.readLine());
} catch (IOException e) {
throw new RuntimeException(e);
}
}
return tokenizer.nextToken();
} public int nextInt() {
return Integer.parseInt(next());
}
}
SGU 202 The Towers of Hanoi Revisited (DP+递归)的更多相关文章
- SGU 202. The Towers of Hanoi Revisited
多柱汉诺塔问题. 引用自wiki百科 多塔汉诺塔问题 在有3个柱子时,所需步数的公式较简单,但对于4个以上柱子的汉诺塔尚未得到通用公式,但有一递归公式(未得到证明,但目前为止没有找到反例): 令为在有 ...
- zoj 2338 The Towers of Hanoi Revisited
The Towers of Hanoi Revisited Time Limit: 5 Seconds Memory Limit: 32768 KB Special Judge You all mus ...
- ZOJ-2338 The Towers of Hanoi Revisited 输出汉诺塔的最优解移动过程
题意:给定N(1<= N <=64)个盘子和M(4<= M <= 65)根柱子,问把N个盘子从1号柱子移动到M号柱子所需要的最少步数,并且输出移动过程. 分析:设f[i][j] ...
- POJ 1958 Strange Towers of Hanoi 解题报告
Strange Towers of Hanoi 大体意思是要求\(n\)盘4的的hanoi tower问题. 总所周知,\(n\)盘3塔有递推公式\(d[i]=dp[i-1]*2+1\) 令\(f[i ...
- POJ 1958 Strange Towers of Hanoi
Strange Towers of Hanoi Time Limit: 1000MS Memory Limit: 30000K Total Submissions: 3784 Accepted: 23 ...
- POJ-1958 Strange Towers of Hanoi(线性动规)
Strange Towers of Hanoi Time Limit: 1000MS Memory Limit: 30000K Total Submissions: 2677 Accepted: 17 ...
- The Towers of Hanoi Revisited---(多柱汉诺塔)
Description You all must know the puzzle named "The Towers of Hanoi". The puzzle has three ...
- [CareerCup] 3.4 Towers of Hanoi 汉诺塔
3.4 In the classic problem of the Towers of Hanoi, you have 3 towers and N disks of different sizes ...
- ural 2029 Towers of Hanoi Strike Back (数学找规律)
ural 2029 Towers of Hanoi Strike Back 链接:http://acm.timus.ru/problem.aspx?space=1&num=2029 题意:汉诺 ...
随机推荐
- VC++学习之VC中常见问题
VC++学习之VC中常见问题 (1)为什么某个类突然在工作区间里面突然看不见了? 只是类隐藏了,打开FILEVIEW,找到隐藏类的头文件,随便敲一下键盘的空格键,类就会在CLASSVIEW中显示了 ( ...
- POJ2352:Stars
题目 Stars Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 34016 Accepted: 14839 Descri ...
- wndows make images
配置文件/etc/xen/mywindows.内容如下 import os, re arch_libdir = 'lib' arch = os.uname()[4] if os.uname()[0] ...
- 最近用的到的一些js的常用方法(简单的)
由于新的项目开始了,是使用MVC 5.0 开发的,前端使用了两个主流的框架 UIKIT,Ignite UI(收费) 因为是mvc主要用json来交互,不能避免要对前端脚本进行操作,所以就将能用到的方法 ...
- 用css3画企鹅
<!DOCTYPE html> <html> <head> <meta charset="utf-8" /> <meta na ...
- SQL函数经常用到的mark一下
在项目开发过程中存储过程会用到很多SQL函数,经常用到的mark一下 1.经常用到的mark 一下 经常需要把id字符以','分隔传入存储过程然后SQL语句用in去搜索但是经常是这样的情况id 经常是 ...
- iOS 发布应用时屏蔽NSLog
在开发过程中,经常需要使用NSLog来进行调试,但是NSLog是非常影响性能的,所以我们应该在发布应用时屏蔽掉NSLog,但是如果通过手工的去一行一行的改得话,未免太枯燥与费时了,庆幸的是,我们可以通 ...
- 有关spring-servlet.xml 和 application.xml的配置信息讲解(这两个配置信息的区别在哪里)
在使用springmvc时需要配置得信息有两个,一个是spring-servlet.xml和applcation.xml: 首先两个文件的的存放位置就有一点的不同(见下图),application.x ...
- 浅谈Servlet(三)
一.三种作用域 作用域:web开发中用于存储和获得数据. 1.request 一次请求有效,在forward跳转时可用request作用域传递数据. 2.session client不变,sessio ...
- Java 网络编程(二) 两类传输协议:TCP UDP
链接地址:http://www.cnblogs.com/mengdd/archive/2013/03/09/2951841.html 两类传输协议:TCP,UDP TCP TCP是Transfer C ...