tf.train.examle函数
在自定义数据集中:
example = tf.train.Example(features=tf.train.Features(feature={
'img_raw': tf.train.Feature(bytes_list=tf.train.BytesList(value=[img_raw])),
'label': tf.train.Feature(int64_list=tf.train.Int64List(value=labels))
}))
下面简要谈一谈我对其的理解
创建 Example 对象,并且将 Feature(img_raw,label) 一一对应填充进去。并保存到writer中。
tf.train.Example的定义如下:
message Example {
Features features = 1;
};
message Features{
map<string,Feature> featrue = 1;
};
message Feature{
oneof kind{
BytesList bytes_list = 1;
FloatList float_list = 2;
Int64List int64_list = 3;
}
};
从上述代码可以看出,tf.train.Example中包含了属性名称到取值的字典,其中属性名称为字符串,属性的取值可以为字符串(BytesList)、实数列表(FloatList)或者整数列表(Int64List)。
一般tf.train.Int64List tf.train.FloatList对应处理整数和浮点数,tf.train.BytesList用于处理字符串的数据。
从上面可以看出一个 Example 消息体包含了一系列的 feature 属性。
每一个 feature 是一个 map,也就是 key-value 的键值对。
key 取值是 String 类型。
而 value 是 Feature 类型的消息体,它的取值有 3 种:
BytesList
FloatList
Int64List
需要注意的是,他们都是列表的形式。
举例说明:
1.构建writer,用于写入数据
2.创建 Example 对象,并且将 Feature(a,b,c) 一一对应填充进去。a,b,c三个不同格式的列表并保存到writer中
3.# 将 example 序列化成 string 类型,然后写入。即 writer.write(example.SerializeToString());
或者
serialized = example.SerializeToString()
writer.write(serialized)
# -*- coding: utf-8 -*-
import tensorflow as tf
import numpy
writer = tf.python_io.TFRecordWriter('test1.tfrecord')
for i in range(0, 2):
a = 0.520 + i
b = [2019 + i, 2018+i]
c = "测试"+str(i)
c_raw = c
print 'i:',i
print ' a:',a
print ' b:',b
print ' c:',c
example = tf.train.Example(
features = tf.train.Features(
feature = {'a':tf.train.Feature(float_list = tf.train.FloatList(value=[a])),
'b':tf.train.Feature(int64_list = tf.train.Int64List(value = b)),
'c':tf.train.Feature(bytes_list = tf.train.BytesList(value = [c_raw]))}))
serialized = example.SerializeToString()
writer.write(serialized)
print ' writer',i,'DOWN!'
writer.close()

tf.train.examle函数的更多相关文章
- tf.train.shuffle_batch函数解析
tf.train.shuffle_batch (tensor_list, batch_size, capacity, min_after_dequeue, num_threads=1, seed=No ...
- tensorflow中 tf.train.slice_input_producer 和 tf.train.batch 函数(转)
tensorflow数据读取机制 tensorflow中为了充分利用GPU,减少GPU等待数据的空闲时间,使用了两个线程分别执行数据读入和数据计算. 具体来说就是使用一个线程源源不断的将硬盘中的图片数 ...
- tensorflow中 tf.train.slice_input_producer 和 tf.train.batch 函数
tensorflow数据读取机制 tensorflow中为了充分利用GPU,减少GPU等待数据的空闲时间,使用了两个线程分别执行数据读入和数据计算. 具体来说就是使用一个线程源源不断的将硬盘中的图片数 ...
- 【转载】 tensorflow中 tf.train.slice_input_producer 和 tf.train.batch 函数
原文地址: https://blog.csdn.net/dcrmg/article/details/79776876 ----------------------------------------- ...
- tensorflow数据读取机制tf.train.slice_input_producer 和 tf.train.batch 函数
tensorflow中为了充分利用GPU,减少GPU等待数据的空闲时间,使用了两个线程分别执行数据读入和数据计算. 具体来说就是使用一个线程源源不断的将硬盘中的图片数据读入到一个内存队列中,另一个线程 ...
- Tensorflow滑动平均模型tf.train.ExponentialMovingAverage解析
觉得有用的话,欢迎一起讨论相互学习~Follow Me 移动平均法相关知识 移动平均法又称滑动平均法.滑动平均模型法(Moving average,MA) 什么是移动平均法 移动平均法是用一组最近的实 ...
- tensorflow中协调器 tf.train.Coordinator 和入队线程启动器 tf.train.start_queue_runners
TensorFlow的Session对象是支持多线程的,可以在同一个会话(Session)中创建多个线程,并行执行.在Session中的所有线程都必须能被同步终止,异常必须能被正确捕获并报告,会话终止 ...
- tf.train.batch的偶尔乱序问题
tf.train.batch的偶尔乱序问题 觉得有用的话,欢迎一起讨论相互学习~Follow Me tf.train.batch的偶尔乱序问题 我们在通过tf.Reader读取文件后,都需要用batc ...
- 【转载】 tf.train.slice_input_producer()和tf.train.batch()
原文地址: https://www.jianshu.com/p/8ba9cfc738c2 ------------------------------------------------------- ...
随机推荐
- Hadoop学习之路(5)Mapreduce程序完成wordcount
程序使用的测试文本数据: Dear River Dear River Bear Spark Car Dear Car Bear Car Dear Car River Car Spark Spark D ...
- 用windows 画图 裁剪照片
图片大小432*312 1.裁剪大小:打开画图--找到矩形选择 形状裁剪完之后,像素会有相应的变化 2.单纯调整像素: 打开画图----重新调整大小(去掉保持纵横比之后可以任意调整大小) 题目:上传 ...
- 2020牛客寒假算法基础集训营1 F-maki和tree
链接:https://ac.nowcoder.com/acm/contest/3002/F来源:牛客网 时间限制:C/C++ 1秒,其他语言2秒 空间限制:C/C++ 262144K,其他语言5242 ...
- Codeforce 584A - Olesya and Rodion
Olesya loves numbers consisting of n digits, and Rodion only likes numbers that are divisible by t. ...
- shell脚本执行sql命令
参考:https://www.cnblogs.com/xingchong/p/11698237.html
- Angular项目目录
0.模块介绍和基础知识 https://cloud.tencent.com/developer/section/1489514 1.如下图VSCode-- node_modules 第三方依赖包存放目 ...
- PHP中关于foreach使用引用变量的坑
PHP版本为 5.6.12 代码如下: 1 2 3 4 5 6 7 8 9 10 11 12 <?php $arr = ['a', 'b', 'c', 'd', 'e']; foreach ...
- linux - redis-trib.rb 命令详解
参考网站 http://www.cnblogs.com/ivictor/p/9768010.html 简介 redis-trib.rb是官方提供的Redis Cluster的管理工具,无需额外下载,默 ...
- JVM学习-环境构建
想学习JVM,java虚拟机的底层原理.下面介绍下怎么将Java文件compiler成字节码,然后反编译为二进制查看分析. 一.JavaClass.java文件: package com.gqz.ja ...
- lnmp1.5一键安装包安装lnmpa后,添加站点
lnmp1.5一键安装包安装lnmpa后,添加站点 (1)添加站点 (2)配置apache配置文件 在/usr/local/apache/conf/vhost文件夹下,修改webApp站点配置文件ap ...